分析 (Ⅰ)求出函數的導數,解關于導函數的不等式,求出函數的單調區間,從而求出函數的極值即可;
(Ⅱ)求出函數的導數,通過討論m的范圍,求出函數的單調區間,根據函數的極值點的個數,確定m的范圍即可.
解答 解:(Ⅰ)f′(x)=$\frac{2}{x+1}$+mx-(2m+1),
由已知得,f′(1)=1-m=0,m=1,
此時f′(x)=$\frac{(x-1)(x-2)}{x}$,
由f′(x)=0,得x=1或x=2,
隨x的變化f′(x)、f(x)的變化情況如下:
x | (0,1) | 1 | (1,2) | 2 | (2,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
x | (0,2) | 2 | (2,$\frac{1}{m}$) | $\frac{1}{m}$ | ($\frac{1}{m}$,+∞) |
f′(x)) | + | 0 | - | 0 | + |
f(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
x | (0,$\frac{1}{m}$) | $\frac{1}{m}$ | ($\frac{1}{m}$,2) | 2 | (2,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
點評 本題考查了函數的單調性、極值問題,考查導數的應用以及分類討論思想,是一道綜合題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3個 | B. | 2個 | C. | 1個 | D. | 0個 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(2)>f(e)>f(3) | B. | f(3)>f(e)>f(2) | C. | f(3)>f(2)>f(e) | D. | f(e)>f(3)>f(2) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 30m | B. | 40m | C. | $40\sqrt{3}$m | D. | $40\sqrt{2}$m |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com