日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
7.若圓${C_1}:{x^2}+{y^2}+ax=0$與圓${C_2}:{x^2}+{y^2}+2ax+ytanθ=0$都關于直線2x-y-1=0對稱,則sinθcosθ=-$\frac{2}{5}$,.

分析 求出圓心坐標,根據圓關于直線對稱,得到圓心在直線上,得到tanθ=-2,利用1的代換進行求解即可.

解答 解:圓C1:x2+y2+ax=0的圓心坐標為(-$\frac{a}{2}$,0),圓C2:x2+y2+2ax+ytanθ=0的圓心坐標為(-a,-$\frac{tanθ}{2}$),
∵兩圓都關于直線2x-y-1=0對稱,
∴圓心都在方程為2x-y-1=0的直線上,
則-$\frac{a}{2}$×2-1=0,得a=-1,
-2a+$\frac{tanθ}{2}$-1=0,即2+$\frac{tanθ}{2}$-1=0則$\frac{tanθ}{2}$=-1,即tanθ=-2,
則sinθcosθ=$\frac{sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{tanθ}{1+ta{n}^{2}θ}$=-$\frac{2}{5}$,
故答案為-$\frac{2}{5}$.

點評 本題主要考查三角函數值的化簡和計算,根據圓的對稱性,得到a,tanθ的值是解決本題的關鍵.綜合性較強.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一個焦點為F(3,0),其左頂點A在圓O:x2+y2=12上.
(1)求橢圓C的方程;
(2)直線l:x=my+3(m≠0)交橢圓C于M,N兩點,設點N關于x軸的對稱點為N1(點N1與點M不重合),且直線N1M與x軸的交于點P,試問△PMN的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.命題“?x0∈(1,+∞),x02+2x0+2≤0”的否定形式是(  )
A.$?x∈(1,+∞),x_0^2+2{x_0}+2>0$B.$?x∈({-∞,1}],x_0^2+2{x_0}+2>0$
C.$?{x_0}∈(1,+∞),x_0^2+2{x_0}+2>0$D.$?{x_0}∈({-∞,1}],x_0^2+2{x_0}+2>0$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知函數$f(x)=2ln(x+1)+\frac{1}{2}m{x^2}-(2m+1)x$
(Ⅰ)若x=1是f(x)的極值點,求f(x)的極值;
(Ⅱ)若f(x)有兩個極值點,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知函數f(x)=|2x-1|+|2x+1|.
(Ⅰ)若不等式f(x)≥a2-2a-1恒成立,求實數a的取值范圍;
(Ⅱ)設m>0,n>0且m+n=1,求證:$\sqrt{2m+1}+\sqrt{2n+1}≤2\sqrt{f(x)}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知$f(x)=\left\{\begin{array}{l}f(x+1),(x<1)\\{3^x}\;,\;\;(x≥1)\end{array}\right.$,則f(-1+log35)=(  )
A.15B.$\frac{5}{3}$C.5D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.設M是圓O:x2+y2=9上動點,直線l過M且與圓O相切,若過A(-2,0),B(2,0)兩點的拋物線以直線l為準線,則拋物線焦點F的軌跡方程是(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{5}$=1(y≠0)B.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{9}$=1(y≠0)C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0)D.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{9}$=1(y≠0)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.如圖,空間幾何體ADE-BCF中,四邊形ABCD是梯形,四邊形CDEF
是矩形,且平面ABCD⊥平面CDEF,AD⊥DC,AB=AD=DE=2,EF=4,M是線段AE上的動點.
(1)求證:AE⊥CD;
(2)試確定點M的位置,使AC∥平面MDF,并說明理由;
(3)在(2)的條件下,求空間幾何體ADM-BCF的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.為了調查黃山市某校高中部學生是否愿意在寒假期間參加志愿者活動,現用簡單隨機抽樣方法,從該校高中部抽取男生和女生共60人進行問卷調查,問卷結果統計如下:
是否愿意提供志愿者服務
性別
愿意不愿意
男生255
女生1515
(1)若用分層抽樣的方法在愿意參加志愿者活動的學生抽取8人,則應從愿意參加志愿者活動的女生中抽取多少人?
(2)在(1)中抽取出的8人中任選3人,求被抽中的女生人數的分布列和數學期望.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲美女爱爱 | 我想看毛片 | 久久精品一区二区三区不卡牛牛 | 亚洲视频一区二区 | 欧美成人精品一区 | 91精品久久久久久 | 亚洲视频国产 | 黄色一级片免费看 | 国产三级黄色 | 99热在线免费观看 | 乳色吐息樱花 | 欧美不卡 | 中文在线观看免费视频 | 黄色综合网 | 日韩在线视频免费 | 黄色成人毛片 | 九色在线视频 | 国产寡妇亲子伦一区二区三区四区 | 国产女人高潮毛片 | 伊人久久精品 | 日韩精品一区在线观看 | 91精品亚洲 | 日本少妇久久 | 久久精品99 | 三级黄色片免费看 | 少妇性bbb搡bbb爽爽爽欧美 | 三级在线看 | 伊人网av | 91午夜理伦私人影院 | 国产伊人网 | 亚洲欧美国产高清va在线播放 | av三级在线观看 | 久久久二区| 一本色道久久综合亚洲精品小说 | 青青视频网 | www.欧美在线 | 99国产精品99久久久久久粉嫩 | 久草福利 | 一级片在线观看视频 | 开心激情婷婷 | 97视频免费 |