A. | 2x<3y<5z | B. | 5z<2x<3y | C. | 3y<5z<2x | D. | 3y<2x<5z |
分析 x、y、z為正數,令2x=3y=5z=k>1.lgk>0.可得x=$\frac{lgk}{lg2}$,y=$\frac{lgk}{lg3}$,z=$\frac{lgk}{lg5}$.可得3y=$\frac{lgk}{lg\root{3}{3}}$,2x=$\frac{lgk}{lg\sqrt{2}}$,5z=$\frac{lgk}{lg\root{5}{5}}$.根據$\root{3}{3}$=$\root{6}{9}$$>\root{6}{8}$=$\sqrt{2}$,$\sqrt{2}=\root{10}{32}$>$\root{10}{25}$=$\root{5}{5}$.即可得出大小關系.
另解:x、y、z為正數,令2x=3y=5z=k>1.lgk>0.可得x=$\frac{lgk}{lg2}$,y=$\frac{lgk}{lg3}$,z=$\frac{lgk}{lg5}$.$\frac{2x}{3y}$=$\frac{2}{3}×\frac{lg3}{lg2}$=$\frac{lg9}{lg8}$>1,可得2x>3y,同理可得5z>2x.
解答 解:x、y、z為正數,
令2x=3y=5z=k>1.lgk>0.
則x=$\frac{lgk}{lg2}$,y=$\frac{lgk}{lg3}$,z=$\frac{lgk}{lg5}$.
∴3y=$\frac{lgk}{lg\root{3}{3}}$,2x=$\frac{lgk}{lg\sqrt{2}}$,5z=$\frac{lgk}{lg\root{5}{5}}$.
∵$\root{3}{3}$=$\root{6}{9}$$>\root{6}{8}$=$\sqrt{2}$,$\sqrt{2}=\root{10}{32}$>$\root{10}{25}$=$\root{5}{5}$.
∴$lg\root{3}{3}$>lg$\sqrt{2}$>$lg\root{5}{5}$>0.
∴3y<2x<5z.
另解:x、y、z為正數,
令2x=3y=5z=k>1.lgk>0.
則x=$\frac{lgk}{lg2}$,y=$\frac{lgk}{lg3}$,z=$\frac{lgk}{lg5}$.
∴$\frac{2x}{3y}$=$\frac{2}{3}×\frac{lg3}{lg2}$=$\frac{lg9}{lg8}$>1,可得2x>3y,
$\frac{5z}{2x}$=$\frac{5}{2}×\frac{lg2}{lg5}$=$\frac{lg{2}^{5}}{lg{5}^{2}}$>1.可得5z>2x.
綜上可得:5z>2x>3y.
解法三:對k取特殊值,也可以比較出大小關系.
故選:D.
點評 本題考查了對數函數的單調性、換底公式、不等式的性質,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -15 | B. | -9 | C. | 1 | D. | 9 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 是偶函數,且在R上是增函數 | B. | 是奇函數,且在R上是增函數 | ||
C. | 是偶函數,且在R上是減函數 | D. | 是奇函數,且在R上是減函數 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com