【題目】將甲、乙兩顆骰子先后各拋一次,分別表示拋擲甲、乙兩顆骰子所出現的點數.圖中三角形陰影部分的三個頂點為
、
)和
.
(1)若點落在如圖陰影所表示的平面區域(包括邊界)的事件記為
,求事件
的概率;
(2)若點落在直線
(
為常數)上,且使此事件的概率
最大,求
和
的值.
【答案】(1); (2)
,
.
【解析】
(1)由題意知,本題是一個古典概型,試驗發生包含的基本事件總數為6×6,畫出圖形,滿足條件的事件可以列舉出有6個整點,根據古典概型概率公式得到結果.
(2)點落在
(
為常數)的直線上,且使此事件的概率最大,只需基本事件最多,由
,畫出圖形,直線
過
時適合,求得
,此時有6個整點,得到結果.
基本事件總數為,
如圖滿足在陰影三角形內的有:
當時,
,2,3;
當時,
,2;
當時,
﹒
共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6個點落在條件區域內,
.
(2)點落在
(
為常數)的直線上,且使此事件的概率最大. 只需基本事件最多.
由,將直線
平移,如圖可知,當
.
即當時,(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)基本事件最多,共有6種
此時最大.
科目:高中數學 來源: 題型:
【題目】某企業為了檢查生產產品的甲、乙兩條流水線的生產情況,隨機地從這兩條流水線上生產的大量產品中各抽取50件產品作為樣本,測出它們的這一項質量指標值.若該項質量指標值落在
內,則為合格品,否則為不合格品.下表是甲流水線樣本的頻數分布表,下圖是乙流水線樣本的頻率分布直方圖.
甲流水線樣本的頻數分布表
質量指標值 | 頻數 |
9 | |
10 | |
17 | |
8 | |
6 |
乙流水線樣本的頻率分布直方圖
(1)根據圖形,估計乙流水線生產的產品的該項質量指標值的中位數;
(2)設該企業生產一件合格品獲利100元,生產一件不合格品虧損50元,若某個月內甲、乙兩條流水線均生產了1000件產品,若將頻率視為概率,則該企業本月的利潤約為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠利用隨機數表對生產的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,,599,600從中抽取60個樣本,如下提供隨機數表的第4行到第6行:
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
若從表中第6行第6列開始向右依次讀取3個數據,則得到的第6個樣本編號
A. 522B. 324C. 535D. 578
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
平面ABCD,底部ABCD為菱形,E為CD的中點.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一商場對每天進店人數和商品銷售件數進行了統計對比,得到如下表格:
人數 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件數 | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
(1)在答題卡給定的坐標系中畫出表中數據的散點圖,并由散點圖判斷銷售件數與進店人數
是否線性相關?(給出判斷即可,不必說明理由);
(2)建立關于
的回歸方程(系數精確到0.01),預測進店人數為80時,商品銷售的件數(結果保留整數).
(參考數據:,
,
,
,
,
)
參考公式:,
,其中
,
為數據
的平均數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大學先修課程,是在高中開設的具有大學水平的課程,旨在讓學有余力的高中生早接受大學思維方式、學習方法的訓練,為大學學習乃至未來的職業生涯做好準備.某高中成功開設大學先修課程已有兩年,共有250人參與學習先修課程.
(Ⅰ)這兩年學校共培養出優等生150人,根據下圖等高條形圖,填寫相應列聯表,并根據列聯表檢驗能否在犯錯的概率不超過0.01的前提下認為學習先修課程與優等生有關系?
優等生 | 非優等生 | 總計 | |
學習大學先修課程 | 250 | ||
沒有學習大學先修課程 | |||
總計 | 150 |
(Ⅱ)某班有5名優等生,其中有2名參加了大學生先修課程的學習,在這5名優等生中任選3人進行測試,求這3人中至少有1名參加了大學先修課程學習的概率.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某企業生產的某種產品中抽取100件,測量這些產品的一項質量指標值,由測量表得如下頻數分布表:
質量指標值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數 | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數據的頻率分布直方圖:
(II)估計這種產品質量指標值的平均數及方差(同一組中的數據用該組區間的中點值作代表);
(III)根據以上抽樣調查數據,能否認為該企業生產的這種產品符合“質量指標值不低于95的產品至少要占全部產品的80%”的規定?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著“北京八分鐘”在韓國平昌冬奧會驚艷亮相,冬奧會正式進入了北京周期,全社會對冬奧會的熱情空前高漲.
(1)為迎接冬奧會,某社區積極推動冬奧會項目在社區青少年中的普及,并統計了近五年來本社區冬奧項目青少年愛好者的人數(單位:人)與時間
(單位:年),列表如下:
依據表格給出的數據,是否可用線性回歸模型擬合與
的關系,請計算相關系數
并加以說明(計算結果精確到0.01).
(若,則線性相關程度很高,可用線性回歸模型擬合)
附:相關系數公式,參考數據
.
(2)某冰雪運動用品專營店為吸引廣大冰雪愛好者,特推出兩種促銷方案.
方案一:每滿600元可減100元;
方案二:金額超過600元可抽獎三次,每次中獎的概率同為 ,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折. v
兩位顧客都購買了1050元的產品,并且都選擇第二種優惠方案,求至少有一名顧客比選擇方案一更優惠的概率;
②如果你打算購買1000元的冰雪運動用品,請從實際付款金額的數學期望的角度分析應該選擇哪種優惠方案.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com