【題目】已知函數,
,
,其中
為正實數,
為自然對數的底數.
(1)求函數的單調區間;
(2)是否存在實數,使得對任意給定的
,在區間
上總存在兩個不同的
,
,使得
成立?若存在,求出正實數
的取值范圍;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】據長期統計分析,某貨物每天的需求量在17與26之間,日需求量
(件)的頻率
分布如下表所示:
需求量 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
頻率 | 0.12 | 0.18 | 0.23 | 0.13 | 0.10 | 0.08 | 0.05 | 0.04 | 0.04 | 0.03 |
已知其成本為每件5元,售價為每件10元.若供大于求,則每件需降價處理,處理價每件2元.假設每天的進貨量必需固定.
(1)設每天的進貨量為,視日需求量
的頻率為概率
,求在每天進貨量為
的條件下,日銷售量
的期望值
(用
表示);
(2)在(1)的條件下,寫出和
的關系式,并判斷
為何值時,日利潤的均值最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,橢圓C:
的離心率是
,拋物線E:
的焦點F是C的一個頂點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P是E上的動點,且位于第一象限,E在點P處的切線與C交與不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M.
(i)求證:點M在定直線上;
(ii)直線與y軸交于點G,記
的面積為
,
的面積為
,求
的最大值及取得最大值時點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線與拋物線
:
交于
,
兩點,且
的面積為16(
為坐標原點).
(1)求的方程.
(2)直線經過
的焦點
且
不與
軸垂直,
與
交于
,
兩點,若線段
的垂直平分線與
軸交于點
,試問在
軸上是否存在點
,使
為定值?若存在,求該定值及
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,函數F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,梯形中,
,
,
,
為
的中點,將
沿
翻折,構成一個四棱錐
,如圖2.
(1)求證:異面直線與
垂直;
(2)求直線與平面
所成角的大小;
(3)若三棱錐的體積為
,求點
到平面
的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com