分析 (1)將不等式f(x)>k變形為關于x的二次不等式,結合三個二次關系可知與之對應的方程的根為-3,-2,由此可得到k的值;
(2)中將不等式f(x)≤t恒成立轉化為求函數的最大值,求解時可借助于基本不等式性質求解
解答 (1)$-\frac{2}{5}$(2)$A(-c,\frac{{2\sqrt{3}}}{3}c)$
解:(1)f(x)>k?kx2-02x+6k<0,由已知其解集為{x|x<-6或x>-1},
得x1=-6,x2=-1是方程kx2-2x+6k=0的兩根,
所以-6-1=$\frac{2}{k}$,即k=-$\frac{2}{7}$.
(2)∵x>0,f(x)=$\frac{2x}{{{x^2}+6}}$=$\frac{2}{{x+\frac{6}{x}}}$≤$\frac{{\sqrt{6}}}{6}$(當且僅當x=$\sqrt{6}$時取“=”),
由已知f(x)≤t對任意x>0恒成立,故t≥f(x)max=$\frac{\sqrt{6}}{6}$,
所以,實數t的取值范圍是[$\frac{\sqrt{6}}{6}$,+∞).
點評 本題考查函數恒成立問題,考查三個二次之間的關系,考查基本不等式的應用,考查方程思想與等價轉化思想的綜合運用,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | (-3,+∞) | B. | [-3,+∞) | C. | (-4,+∞) | D. | [-4,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,+∞) | B. | (-1,1) | C. | (-1,0) | D. | (0,1) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (6+2$\sqrt{5}$)π | B. | (8+2$\sqrt{5}$)π | C. | (9+2$\sqrt{5}$)π | D. | (10+2$\sqrt{5}$)π |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ?x∈R,|x|+x2<0 | B. | ?x∈R,|x|+x2?0 | C. | ?x0∈R,|x|+x2<0 | D. | ?∈R,|x|+?0 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com