日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

4.已知中心在原點、焦點在x軸上的橢圓經(jīng)過點(2,1).試求其長軸長的取值范圍.

分析 設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,將點(2,1)代入,由a>b,得a的不等式,由此能求出該橢圓的長軸長的范圍.

解答 解:不妨設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,
將點(2,1)代入得:$\frac{4}{{a}^{2}}+\frac{1}{{b}^{2}}=1$,
因為a為半長軸的長,即a>b,
所以$\frac{4}{{a}^{2}}+\frac{1}{{a}^{2}}$<1,
所以a2>5,解得a>$\sqrt{5}$,
故該橢圓的長軸長的范圍是:($2\sqrt{5}$,+∞).

點評 本題考查橢圓長軸的取值范圍的求法,是中檔題,解題時要認真審題,注意橢圓性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.定義$|{\begin{array}{l}a&b\\ c&d\end{array}}|$=ad-bc.若θ是銳角△ABC中最小內(nèi)角,函數(shù)f(θ)=$|{\begin{array}{l}{sinθ}&{cosθ}\\{-1}&1\end{array}}|$,則f(θ)的最大值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知Sn是等差數(shù)列{an}的前n項和,a1=2,a1+a4=a5,若Sn>32,則n的最小值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設(shè)函數(shù)y=f(x+1)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),在區(qū)間(-∞,0)是減函數(shù),且圖象過點(1,0),則不等式(x-1)f(x)≤0的解集為(-∞,0]∪[1,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.復(fù)數(shù)z=i(2-i)(i是虛數(shù)單位),則z的共軛復(fù)數(shù)$\overline z$=(  )
A.1-2iB.1+2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知f($\frac{1-x}{1+x}$)=$\frac{1-{x}^{2}}{1+{x}^{2}}$,則f(x)的解析式可取為(  )
A.$\frac{x}{1+{x}^{2}}$B.-$\frac{2x}{1+{x}^{2}}$C.$\frac{2x}{1+{x}^{2}}$D.-$\frac{x}{1+{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知在三角形ABC中,AB=AC,BC=4,∠BAC=120°,$\overrightarrow{BE}$=3$\overrightarrow{EC}$,若P是BC邊上的動點,則$\overrightarrow{AP}$•$\overrightarrow{AE}$的取值范圍是(  )
A.[-1,3]B.$[{-\frac{2}{3},3}]$C.$[{-\frac{2}{3},\frac{10}{3}}]$D.$[{-1,\frac{10}{3}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知等差數(shù)列{an}的前n項和為Sn,公差為2,且a1,S2,S4成等比數(shù)列,則數(shù)列{an}的通項公式an等于(  )
A.2n+1B.2n-3C.2n-1D.2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的圖象經(jīng)過三點(0,1),$(\frac{5π}{12},0)$,$(\frac{11π}{12},0)$,且在區(qū)間$(\frac{5π}{12},\frac{11π}{12})$內(nèi)有唯一的最值,且為最小值.
(1)求函數(shù)f(x)=Asin(ωx+φ)的解析式;
(2)若函數(shù)f(x)在區(qū)間[-m,m]上是單調(diào)遞增函數(shù),求實數(shù)m的最大值;
(3)若關(guān)于x的方程f(x)-a+1=0在區(qū)間$(0,\frac{π}{2})$內(nèi)有兩個實數(shù)根x1,x2(x1<x2),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产欧美久久一区二区三区 | 欧美 日韩 亚洲 一区 | 久久伊人在 | 四虎884a | 日韩中文字幕在线观看 | 亚洲精品日韩综合观看成人91 | 日韩一级不卡 | 综合一区在线观看 | 亚洲精品在线国产 | 天天操天天插天天干 | 国外爱爱视频 | 国产高清av在线一区二区三区 | 中文字幕日本视频 | 亚洲视频免费在线观看 | 国产日批 | 黄色网址免费在线播放 | 人成精品 | 伊人电影综合 | 亚洲字幕网 | 九九热精品在线观看 | 欧美一级二级三级 | 欧美在线操 | 欧美日韩国产中文 | 欧美一区二区三区成人精品 | 久色| 一本一道久久a久久精品综合蜜臀 | 欧美综合激情 | 成人精品一区二区 | 成人精品久久 | 一级片在线观看网站 | 日本黄色免费 | 91精品国产入 | 久久久www成人免费无遮挡大片 | 国产精品一区二区三区在线 | 在线免费视频成人 | 图片区 国产 欧美 另类 在线 | 国产亚洲成av人片在线观看桃 | 久久久久久久久免费视频 | 国产视频久久精品 | 亚洲久久 | 成人欧美一区二区三区黑人麻豆 |