分析 (1)問題轉化為a≤(2x2)min=2,a≥(2$\sqrt{x}$)max=2,求出a的值,從而求出函數的解析式;
(2)f(x)=g(x)+2⇒x2-2lnx-x+2$\sqrt{x}$-2=0,設h(x)=x2-2lnx-x+2$\sqrt{x}$-2(x>0),由函數的單調性能導出方程f(x)=g(x)+2在x>0時只有唯一解.
解答 解:(1)由題意知:f′(x)=$\frac{{2x}^{2}-a}{x}$≥0在(1,2)上恒成立⇒a≤(2x2)min=2,
又g′(x)=$\frac{2\sqrt{x}-a}{2\sqrt{x}}$≤0在(0,1]上恒成立⇒a≥(2$\sqrt{x}$)max=2,
∴a=2,f(x)=x2-2lnx,g(x)=x-2$\sqrt{x}$.
(2)f(x)=g(x)+2⇒x2-2lnx-x+2$\sqrt{x}$-2=0,
設h(x)=x2-2lnx-x+2$\sqrt{x}$-2(x>0),
則h′(x)=2x-$\frac{2}{x}$+$\frac{1}{\sqrt{x}}$-1,
x∈(0,1]時,h′(x)<0,x∈[1,+∞),h′(x)≥0,
解得h(x)在(0,1]上單調遞減,在[1,+∞)單調遞增,
∴h(x)min=h(1)=0,
即方程f(x)=g(x)+2在x>0時只有唯一解.
點評 本題考查利用導數判斷函數的單調性,具有一定的難度,解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉化.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com