分別是橢圓
:
+
=1(
)的左、右焦點(diǎn),
是橢圓
的上頂點(diǎn),
是直線
與橢圓
的另一個(gè)交點(diǎn),
=60°.
(1)求橢圓的離心率;
(2)已知△的面積為40
,求a, b 的值.
(1) ; (2)
;
【解析】
試題分析:(1)易知A為短軸上的一個(gè)頂點(diǎn),因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011314255377714023/SYS201301131426422771737466_DA.files/image003.png">=60°,所以在△AOF2中,a=AF2=2c,
所以橢圓的離心率為。
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011314255377714023/SYS201301131426422771737466_DA.files/image003.png">=60°,所以直線
的斜率為
,所以直線
的方程為
,與橢圓方程聯(lián)立
得:
,設(shè)
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011314255377714023/SYS201301131426422771737466_DA.files/image013.png">,所以0+x0=
,所以x0=
,y0=
,
所以=40
…………………………………………………………①
又………………………………②
①②聯(lián)立解得:。
考點(diǎn):本題考查橢圓的簡單性質(zhì);直線與橢圓的綜合問題。
點(diǎn)評:研究直線與橢圓的綜合問題,通常有兩種思路:一是轉(zhuǎn)化為研究方程組的解的問題,利用直線方程與橢圓方程所組成的方程組消去一個(gè)變量后,將交點(diǎn)問題(包括公共點(diǎn)個(gè)數(shù)、與交點(diǎn)坐標(biāo)有關(guān)的問題)轉(zhuǎn)化為一元二次方程根的問題,結(jié)合根與系數(shù)的關(guān)系及判別式解決問題;二是運(yùn)用數(shù)形結(jié)合的思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2+1 |
1 |
4 |
3 |
4 |
3 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,
分別是橢圓
:
+
=1(
)的左、右焦點(diǎn),
是橢圓
的頂點(diǎn),
是直線
與橢圓
的另一個(gè)交點(diǎn),
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)已知面積為40
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:解答題
已知A,B分別是橢圓C1:+
=1的左、右頂點(diǎn),P是橢圓上異于A,B的任意一點(diǎn),Q是雙曲線C2:
-
=1上異于A,B的任意一點(diǎn),a>b>0.
(1)若P(,
),Q(
,1),求橢圓C1的方程;
(2)記直線AP,BP,AQ,BQ的斜率分別是k1,k2,k3,k4,求證:k1·k2+k3·k4為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)若P是該橢圓上的一個(gè)動點(diǎn),求·
的最大值和最小值;
(2)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com