分析 (1)由已知條件根據“大邊對大角的”原則可知,最小邊為c,由此利用正弦定理能求出此三角形最小邊的長及a.
(2)利用三角形內角和定理可求∠C,利用正弦定理可求a,利用等腰三角形的性質可求c,即可得解.
解答 解:(1)∵C=45°,A=60°,可得:B=180°-A-C=75°,
∴C<A<B,可得:c<a<b,即c邊最小.
由正弦定理可得:a=$\frac{bsinA}{sinB}=\frac{2sin60°}{sin75°}$=3$\sqrt{2}-\sqrt{6}$,
c=$\frac{bsinC}{sinB}=\frac{2sin45°}{sin75°}$=2$\sqrt{3}-2$.
綜上可知,最小邊c的長為2$\sqrt{3}$-2,a=3$\sqrt{2}$-$\sqrt{6}$,B=75°.
(2)∵A=30°,B=120°,
∴C=180°-A-B=30°,
∴A=C,可得:a=c.
由正弦定理可得a=$\frac{bsinA}{sinB}=\frac{5sin30°}{sin120°}$=$\frac{5\sqrt{3}}{3}$.
綜上可知,C=30°,a=c=$\frac{5\sqrt{3}}{3}$.
點評 本題考查三角形最小邊的長及a的求法,考查了正弦定理,三角形內角和定理的應用,是中檔題,解題時要認真審題,注意正弦定理的合理運用.
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -3 | B. | -$\frac{3}{2}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [4,+∞) | B. | (4,+∞) | C. | (3,4] | D. | (3,4) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {1,2} | B. | (1,2) | C. | {-1,-2} | D. | [1,+∞) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com