【題目】已知函數 .
(1)當時,求函數
的單調增區間;
(2)當時,求函數
在區間
上的最大值;
(3)對任意,恒有
,求實數
的取值范圍.
【答案】(1)函數的單調遞增區間為
,
(2)函數
取得最大值
(3)
【解析】
(1)將代入函數,去掉絕對值得到分段函數,然后分別求導,利用導數求函數的單調區間.
(2),則
,對函數求導,判斷單調性,根據單調性即可得出函數在區間
上的最大值.
(3)由(1)(2)得,,分情況討論
、
時函數的單調性,從而得出實數
的取值范圍.
(1)當時,
,
若時,則
,令
,解得
;
若時,則
恒成立,所以
,
所以函數的單調遞增區間為
,
.
(2)若,當
時,
,
.
令,解得
或
.
列表如下:
當時,函數
取得最大值
.
(3)由(1)(2)得,.
①當時,即
時,
,即
.
因為在
上單調遞增,
所以當時,
取得最小值
,
所以,解得
,又
,所以
.
②當即
時,
當時,
,即
,
與矛盾,
所以,實數的取值范圍為
.
科目:高中數學 來源: 題型:
【題目】已知橢圓C:+
=1(a>b>0)的離心率為
,直線l:x+2y=4與橢圓有且只有一個交點T.
(I)求橢圓C的方程和點T的坐標;
(Ⅱ)O為坐標原點,與OT平行的直線l′與橢圓C交于不同的兩點A,B,直線l′與直線l交于點P,試判斷是否為定值,若是請求出定值,若不是請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】本小題滿分13分)
工作人員需進入核電站完成某項具有高輻射危險的任務,每次只派一個人進去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內不能完成任務則撤出,再派下一個人.現在一共只有甲、乙、丙三個人可派,他們各自能完成任務的概率分別,假設
互不相等,且假定各人能否完成任務的事件相互獨立.
(1)如果按甲在先,乙次之,丙最后的順序派人,求任務能被完成的概率.若改變三個人被派出的先后順序,任務能被完成的概率是否發生變化?
(2)若按某指定順序派人,這三個人各自能完成任務的概率依次為,其中
是
的一個排列,求所需派出人員數目
的分布列和均值(數字期望)
;
(3)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數目的均值(數字期望)達到最。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業積極響應國家“科技創新”的號召,大力研發人工智能產品,為了對一批新研發的產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到一組銷售數據,如下表所示:
試銷單價 | 1 | 2 | 3 | 4 | 5 | 6 |
產品銷量 | 91 | 86 | 78 | 73 | 70 |
附:參考公式:,
,
參考數據:,
,
.
(1)求的值;
(2)已知變量,
具有線性相關關系,求產品銷量
(件)關于試銷單價
(百元)的線性回歸方程
(計算結果精確到整數位);
(3)用表示用正確的線性回歸方程得到的與
對應的產品銷量的估計值.當銷售數據
的殘差的絕對值
時,則將銷售數據稱為一個“有效數據”.現從這6組銷售數據中任取2組,求抽取的2組銷售數據都是“有效數據”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業質量檢驗員為了檢測生產線上零件的質量情況,從生產線上隨機抽取了個零件進行測量,根據所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:
(1)根據頻率分布直方圖,求這個零件尺寸的中位數(結果精確到
);
(2)若從這個零件中尺寸位于
之外的零件中隨機抽取
個,設
表示尺寸在
上的零件個數,求
的分布列及數學期望
;
(3)已知尺寸在上的零件為一等品,否則為二等品,將這
個零件尺寸的樣本頻率視為概率. 現對生產線上生產的零件進行成箱包裝出售,每箱
個. 企業在交付買家之前需要決策是否對每箱的所有零件進行檢驗,已知每個零件的檢驗費用為
元. 若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進入買家手中,企業要向買家對每個二等品支付
元的賠償費用. 現對一箱零件隨機抽檢了
個,結果有
個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據,該企業是否對該箱余下的所有零件進行檢驗?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,
,
,
,
,
,
為線段
的中點.
(Ⅰ)求直線與平面
所成角的余弦值;
(Ⅱ)求二面角的大;
(Ⅲ)若在段
上,且直線
與平面
相交,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com