分析 先求出f($\frac{π}{4}$)=-tan$\frac{π}{4}$=-1,從而f(f($\frac{π}{4}$))=f(-1),由此能求出結果.
解答 解:∵函數f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{-tanx,0≤x<\frac{π}{2}}\end{array}\right.$,
∴f($\frac{π}{4}$)=-tan$\frac{π}{4}$=-1,
f(f($\frac{π}{4}$))=f(-1)=${2}^{-1}=\frac{1}{2}$.
故答案為:$\frac{1}{2}$.
點評 本題考查函數值的求法,是基礎題,解題時要認真審題,注意函數性質的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\sqrt{3}$ | D. | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com