分析 本題主要考查線性規劃的基本知識,先畫出約束條件 的可行域,再求出可行域中各角點的坐標,將各點坐標代入目標函數的解析式,分析后易得目標函數-2x+y的最小值.
解答 解:由約束條件得如圖所示的三角形區域,
令2x-y=z,
顯然當平行直線2x-y=z過點C時,z取得最小值,
由$\left\{\begin{array}{l}{x=3}\\{x+y=0}\end{array}\right.$,可得C(3,-3),
z=-2x+y的最小值為:-9.
故答案為:-9.
點評 在解決線性規劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點的坐標⇒③將坐標逐一代入目標函數⇒④驗證,求出最優解.
科目:高中數學 來源: 題型:選擇題
A. | 向左平行移動$\frac{1}{2}$個長度單位 | B. | 向右平行移動$\frac{1}{2}$個長度單位 | ||
C. | 向左平行移動1個長度單位 | D. | 向右平行移動1個長度單位 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {-2,-1,0,1,2} | B. | {-2,-1,0,1} | C. | {-1,0,1,2} | D. | {-1,0,1} |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com