分析 (Ⅰ)利用輔助角公式基本公式將函數化為y=Asin(ωx+φ)的形式,相鄰兩條對稱軸間的距離為$\frac{π}{2}$.根據周期公式,可得ω,f(-x)=f(x),函數f(x)是偶函數,可得φ.即得f(x)的解析式;
(Ⅱ)函數$y=f(x)+f({x+\frac{π}{4}})$,將f(x)代入化簡,求解函數y,結合三角函數的圖象和性質,可得單調減區間.
解答 解:函數f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(ω>0,0<φ<π),
化簡可得:f(x)=2sin(ωx+φ$-\frac{π}{6}$)
(Ⅰ)∵f(-x)=f(x),即函數f(x)是偶函數.
∴φ$-\frac{π}{6}$=$\frac{π}{2}+kπ$,k∈Z.
∵0<φ<π
∴φ=$\frac{2π}{3}$.
相鄰兩條對稱軸間的距離為$\frac{π}{2}$.即$\frac{1}{2}$T=$\frac{π}{2}$.
∵T=$\frac{2π}{ω}$.
∴ω=2.
故得f(x)=2f(x)=2sin(2x+$\frac{2π}{3}$$-\frac{π}{6}$)=2cos2x.
(Ⅱ)函數$y=f(x)+f({x+\frac{π}{4}})$,f(x)=2cos2x.
∴y=2cos2x+2cos2(x+$\frac{π}{4}$)=2cos2x-2sin2x=-2$\sqrt{2}$sin(2x-$\frac{π}{4}$)
令$-\frac{π}{2}+2kπ≤$2x-$\frac{π}{4}$$≤\frac{π}{2}+2kπ$,k∈Z.
得:$-\frac{π}{8}+kπ$≤x≤$\frac{3π}{8}+kπ$
∴函數y的單調減區間:[$-\frac{π}{8}+kπ$,$\frac{3π}{8}+kπ$],k∈Z.
點評 本題主要考查對三角函數的化簡能力和三角函數的圖象和性質的運用,利用三角函數公式將函數進行化簡是解決本題的關鍵.屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 15 | B. | 11 | C. | 8 | D. | 7 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | -$\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com