日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
9.在△ABC中,∠BAC=120°,AB=2,AC=1,P是BC邊上的一點,則${(\overrightarrow{BP})^2}-\overrightarrow{AP}•\overrightarrow{BC}$的取值范圍是( 。
A.$[\frac{1}{4},3]$B.$[\frac{1}{2},5]$C.$[\frac{13}{4},5]$D.$[-\frac{27}{4},-5]$

分析 利用余弦定理求得BC,再利用正弦定理求得sinB,可得cosB的值,再把${(\overrightarrow{BP})^2}-\overrightarrow{AP}•\overrightarrow{BC}$=${(λ•\overrightarrow{BC})}^{2}$-($\overrightarrow{AB}$+λ$\overrightarrow{BC}$)•$\overrightarrow{BC}$ 轉化為關于λ的二次函數,結合二次函數在閉區間上的最值即可求解.

解答 解:∵在△ABC中,∠BAC=120°,AB=2,AC=1,
在△ABC中,∠BAC=120°中,根據余弦定理得,BC2=AB2+AC2-2AB•ACcos∠BAC,
∴BC=$\sqrt{4+1-2•2•1•cos120°}$=$\sqrt{7}$.
根據正弦定理得,$\frac{AC}{sinB}$=$\frac{BC}{sinA}$,即$\frac{1}{sinB}$=$\frac{\sqrt{7}}{sin120°}$,∴sinB=$\frac{3}{2\sqrt{7}}$,cosB=$\frac{5}{2\sqrt{7}}$,
從而有${(\overrightarrow{BP})^2}-\overrightarrow{AP}•\overrightarrow{BC}$=${(λ•\overrightarrow{BC})}^{2}$-($\overrightarrow{AB}$+λ$\overrightarrow{BC}$)•$\overrightarrow{BC}$=7λ2-2$\sqrt{7}$•$\frac{5}{2\sqrt{7}}$-7λ=7${(λ-\frac{1}{2})}^{2}$+$\frac{13}{4}$,
∴${(\overrightarrow{BP})^2}-\overrightarrow{AP}•\overrightarrow{BC}$的取值范圍是[$\frac{13}{4}$,5].
故選:C.

點評 本題主要考查了正弦定理、余弦定理在求解三角形中的應用,向量的數量積的應用及二次函數的性質的靈活應用是求解的關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.下列命題中正確的有( 。
①命題?x∈R,使sin x+cos x=$\sqrt{3}$的否定是“對?x∈R,恒有sin x+cos x≠$\sqrt{3}$”;
②“a≠1或b≠2”是“a+b≠3”的充要條件;
③R2越小,模型的擬合效果越好;
④十進制數66化為二進制數是1 000 010(2)
A.①②③④B.①④C.②③D.③④

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知$sin({π-α})=\frac{{\sqrt{5}}}{5}$,則sin4α-cos4α為( 。
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.求過點P$(2,2\sqrt{3})$的圓x2+y2=4的切線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.已知盒中裝有3個紅球,2個白球,5個黑球,它們除顏色外完全相同,小明需要一個紅球,若他每次從中任取一個球且取出的球不再放回,則他在第一次拿到白球的條件下,第二次拿到紅球的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.等差數列{an}中,a2=1,公差d=2,則a3=(  )
A.1B.3C.5D.7

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.△ABC中,a,b,c分別是三個內角A,B,C的對邊,且(2c-a)cosB=bcosA.
(Ⅰ)求B;
(Ⅱ)若BC=6,AC邊上的中線BD的長為7,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知$y=sin(\frac{π}{6}-x)$的圖象向左平移m個單位,所得圖象關于y軸對稱,則m的最小值為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.學校為了解高二年級l203名學生對某項教改試驗的意見,打算從中抽取一個容量為40的樣本,考慮用系統抽樣,則分段的間隔k為30.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: av成人免费 | 欧美偷拍自拍 | 狠狠的干| 欧美一区2区三区4区公司贰佰 | 亚洲香蕉精品 | 国产精品一区久久久久 | 亚洲精品乱码久久久久久按摩观 | 国产露脸150部国语对白 | 亚洲高清av | 亚洲激情av | 成人韩免费网站 | 日韩欧美中文在线 | 一级黄色生活视频 | 国产成人精品久久 | 毛片网站免费观看 | 天天看天天做 | 国产国拍亚洲精品av | 国产精品久久久久久久久久东京 | 中文字幕第九页 | 99这里只有精品 | 亚洲电影免费 | 国产一区二区在线免费观看 | 久久九九国产 | 9191视频 | 国产精一区二区 | 欧洲大片精品免费永久看nba | 国产精品夜夜 | 欧美性一区二区三区 | 久久女同互慰一区二区三区 | 亚洲欧美日韩另类精品一区二区三区 | 欧美一区二区三区视频 | 亚洲三区在线观看 | 在线观看中文 | 91亚洲高清| 国产精品自拍视频网站 | 亚洲成人av在线播放 | 久色 | 欧美午夜影院 | 欧美电影一区 | 国产成人一区二区三区 | 中文久久|