【題目】某學校因為寒假延期開學,根據教育部停課不停學的指示,該學校組織學生線上教學,高一年級在線上教學一個月后,為了了解線上教學的效果,在線上組織了數學學科考試,隨機抽取50名學生的成績并制成頻率分布直方圖如圖所示.
(1)求m的值,并估計高一年級所有學生數學成績在分的學生所占的百分比;
(2)分別估計這50名學生數學成績的平均數和中位數.(同一組中的數據以該組區間的中點值作代表,結果精確到0.1)
科目:高中數學 來源: 題型:
【題目】已知圓的一條直角是橢圓
的長軸,動直線
,當
過橢圓
上一點
且與圓
相交于點
時,弦
的最小值為
.
(1)求圓即橢圓的方程;
(2)若直線是橢圓
的一條切線,
是切線上兩個點,其橫坐標分別為
,那么以
為直徑的圓是否經過
軸上的定點?如果存在,求出定點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,曲線是以原點O為中心、
為焦點的橢圓的一部分,曲線
是以O為頂點、
為焦點的拋物線的一部分,A是曲線
和
的交點且
為鈍角,若
,
.
(1)求曲線和
的方程;
(2)過作一條與
軸不垂直的直線,分別與曲線
依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問
是否為定值?若是求出定值;若不是說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在發生某公共衛生事件期間,有專業機構認為該事件在一段時間沒有發生在規模群體感染的標志為“連續10天,每天新增疑似病例不超過7人”.根據過去10天甲、乙、丙、丁四地新增疑似病例數據,一定符合該標志的是
A. 甲地:總體均值為3,中位數為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數為2,眾數為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,公園里有一湖泊,其邊界由兩條線段和以
為直徑的半圓弧
組成,其中
為2百米,
為
.若在半圓弧
,線段
,線段
上各建一個觀賞亭
,再修兩條棧道
,使
. 記
.
(1)試用表示
的長;
(2)試確定點的位置,使兩條棧道長度之和最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》第三章“衰分”介紹了比例分配問題,“衰分”是按比例遞減分配的意思,通常稱遞減的比例為“衰分比”.如:已知三人分配獎金的衰分比為
,若
分得獎金1000元,則
所分得獎金分別為900元和810元.某科研所四位技術人員甲、乙、丙、丁攻關成功,共獲得獎金59040元,若甲、乙、丙、丁按照一定的“衰分比”分配獎金,且甲與丙共獲得獎金32800元,則“衰分比”與丙所獲得的獎金分別為( )
A.,12800元B.
,12800元
C.,10240元D.
,10240元
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com