日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
1.如圖,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,∠BAC=90°,F為棱AA1上的動點,A1A=4,AB=AC=2.
(1)當F為A1A的中點,求直線BC與平面BFC1所成角的余弦值;
(2)當$\frac{AF}{{F{A_1}}}$的值為多少時,二面角B-FC1-C的大小是45°.

分析 (1)以點A為原點建立空間直角坐標系,求出相關點的坐標,平面BFC1的一個法向量,利用向量的數量積求解直線BC與平面BFC1所成角的正弦值.
(2)設$F(0,0,t)(0≤t≤4),\overrightarrow{BF}=(-2,0,t),\overrightarrow{B{C_1}}=(-2,2,4)$,求出平面BFC1的一個法向量,平面FC1C的一個法向量,利用向量的數量積求解二面角B-FC1-C的大小.

解答 (本題滿分16分)
解:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),B(2,0,0),C(0,2,0),A1(0,0,4),C1(0,2,4),
(1)因為F為中點,則$F(0,0,2),\overrightarrow{BF}=(-2,0,2),\overrightarrow{B{C_1}}=(-2,2,4),\overrightarrow{BC}=(-2,2,0)$,
設$\overrightarrow n=(x,y,z)$是平面BFC1的一個法向量,
則$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{BF}=-2x+2z=0\\ \overrightarrow n•\overrightarrow{B{C_1}}=-2x+2y+4z=0\end{array}\right.$,取x=1,則$\overrightarrow n=(1,-1,1)$,…(4分)
則$cos\left?{\overrightarrow{BC}•\overrightarrow n}\right>=\frac{{\overrightarrow{BC}•\overrightarrow n}}{{|\overrightarrow{BC}|•|\overrightarrow n|}}=\frac{-4}{{2\sqrt{2}•\sqrt{3}}}=-\frac{{\sqrt{6}}}{3}$,…(6分)
所以直線BC與平面BFC1所成角的正弦值為$\frac{{\sqrt{6}}}{3}$
所以直線BC與平面BFC1所成角的余弦值為$\sqrt{1-{{({\frac{{\sqrt{6}}}{3}})}^2}}=\frac{{\sqrt{3}}}{3}$…(8分)
(2)設$F(0,0,t)(0≤t≤4),\overrightarrow{BF}=(-2,0,t),\overrightarrow{B{C_1}}=(-2,2,4)$,
設$\overrightarrow n=(x,y,z)$是平面BFC1的一個法向量,
則$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{BF}=-2x+tz=0\\ \overrightarrow n•\overrightarrow{B{C_1}}=-2x+2y+4z=0\end{array}\right.$,取z=2,則$\overrightarrow n=(t,t-4,2)$…(11分
)$\overrightarrow{AB}=(2,0,0)$是平面FC1C的一個法向量,
則$cos<\overrightarrow n,\overrightarrow{AB}>=\frac{{\overrightarrow n•\overrightarrow{AB}}}{{|\overrightarrow n|•|\overrightarrow{AB}|}}=\frac{2t}{{2\sqrt{{t^2}+{{(t-4)}^2}+4}}}$,…(14分)
∴$|{\frac{2t}{{2\sqrt{{t^2}+{{(t-4)}^2}+4}}}}|=\frac{{\sqrt{2}}}{2}$,得$t=\frac{5}{2}$,即$AF=\frac{5}{2},F{A_1}=\frac{3}{2}$,
所以當$\frac{AF}{{F{A_1}}}=\frac{5}{3}$時,二面角B-FC1-C的大小是45°.         …(16分)

點評 本題考查二面角的平面角的求法,直線與平面所成角的求法,考查空間想象能力以及計算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

11.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)若A⊆B,求實數m的取值范圍;
(2)若A∩B=(1,2),求實數m的取值范圍;
(3)若A∩B=∅,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.若y=f(x)是定義在R上周期為2的周期函數,且f(x)是偶函數,當x∈[0,1]時,f(x)=2x-1,則函數g(x)=f(x)-log3(x+1)的零點個數為3.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知圓C與圓D:(x-1)2+(y+2)2=4關于直線y=x對稱.
(Ⅰ) 求圓C的標準方程;
(Ⅱ)若直線l:y=kx+1與圓C交于A、B兩點,且|AB|=2$\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.已知x<0,求$y=\frac{{1+{x^2}}}{x}$的最大值=-2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.在調查480名男人中有38名患有色盲,520名女人中有6名患有色盲,根據調查數據作出如下的列聯表:
色盲不色盲合計
38442480
6514520
合計449561000
利用獨立性檢驗的方法來判斷色盲與性別有關?你所得到的結論在什么范圍內有效?
注:χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(χ2≥10.828)≈0.001,P(χ2≥5.024)≈0.025,P(χ2≥6.635)≈0.01.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知a為實數,函數f(x)=(x-a)2+|x-a|-a(a-1).
(Ⅰ)若f(0)≤1,求a的取值范圍;
(Ⅱ)當a≥2時,討論f(x)+$\frac{4}{x}$在區間(0,+∞)內零點的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知命題p:函數f(x)=|4x-a|-ax(a>0)存在最小值;命題q:關于x的方程2x2-(2a-2)x+3a-7=0有實數根.則使“命題p∨?q為真,p∧?q為假”的一個必要不充分的條件是(  )
A.3≤a<5B.0<a<4C.4<a<5或0≤a≤3D.3<a<5或0≤a<3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.甲、乙兩人各進行3次射擊,甲每次擊中目標的概率為$\frac{1}{2}$,乙每次擊中目標的概率為$\frac{2}{3}$求:
(1)乙至少擊中目標2次的概率;
(2)乙恰好比甲多擊中目標2次的概率.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产成人精品免费 | 在线播放国产一区二区三区 | 亚洲日本精品视频 | 色吊丝在线永久观看最新版本 | 激情欧美一区二区 | 日韩一级免费在线观看 | 久久99精品久久久久久久青青日本 | 久久一本 | 日日操操 | 日韩有码一区 | 日韩成人在线观看视频 | 久久九九精品久久 | 日本中文在线观看 | 久久亚洲婷婷 | 亚洲一区久久 | 欧美日韩一区二区三区 | 日韩视频一区二区 | 成人在线一区二区 | 99精品电影 | 国产精品4hu.www | 性培育学校羞耻椅子调教h 另类中文字幕 | 天天天色 | 综合久久一区二区三区 | 毛片免费在线观看 | 波多野结衣一区二 | 国产精品国产精品国产专区不片 | 日日干夜夜操 | 日韩精品| 午夜免费观看视频 | 俺要去97中文字幕 | 99影视| 国产在线观看欧美 | 18视频免费网址在线观看 | 精品国产污污免费网站入口 | 日韩毛片免费在线观看 | 国产精品成人在线 | 午夜精品一区二区三区在线观看 | 国产美女福利 | 成人在线 | 成人久久久精品国产乱码一区二区 | 欧美性猛交一区二区三区精品 |