分析 (Ⅰ)先根據雙曲線的定義,確定軌跡E是以A,C為焦點,實軸長為2$\sqrt{2}$的雙曲線的左支,再寫出雙曲線的方程;
(Ⅱ)設切線l的方程y=x-$\sqrt{3}$,代入$\frac{{x}^{2}}{2}-{y}^{2}$=1,消元得x2-4$\sqrt{3}$x-8=0,由此,即可求|BD|的值.
解答 解:(Ⅰ)由題意得|MC|-|MA|=|MC|-|MQ|=|CQ|=2$\sqrt{2}$<2$\sqrt{3}$,
∴軌跡E是以A,C為焦點,實軸長為2$\sqrt{2}$的雙曲線的左支…(2分)
∴軌跡E的方程為$\frac{{x}^{2}}{2}-{y}^{2}$=1(x$≤\sqrt{2}$)…(4分)
(Ⅱ)設切線l的方程為y=x-$\sqrt{3}$,代入$\frac{{x}^{2}}{2}-{y}^{2}$=1,消元得x2-4$\sqrt{3}$x-8=0.(8分)
設B,D兩點的坐標分別為(x1,y1),(x2,y2),
則x1+x2=4$\sqrt{3}$,x1x2=-8
所以|BD|=$\sqrt{1+1}•\sqrt{48+32}$=4$\sqrt{10}$.(12分)
點評 本題考查雙曲線的定義,考查雙曲線的標準方程,考查直線與雙曲線的位置關系,考查學生的計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(1)=f′(1) | B. | f(1)>f′(1) | C. | f(1)<f′(1) | D. | 無法判斷 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-4,1) | B. | (-1,4) | C. | (-∞,-$\frac{3}{2}$) | D. | (-∞,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com