日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

11.計(jì)算下列各式的值
(1)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$
   (2)$\root{3}{(-4)^{3}}$-($\frac{1}{2}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4

分析 (1)根據(jù)對數(shù)的運(yùn)算性質(zhì)計(jì)算即可,
(2)根據(jù)冪的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:(1)原式=$\frac{lg4+lg3}{lg10+lg0.6+lg2}$=$\frac{lg4×3}{lg10×0.6×2}$=$\frac{lg12}{lg12}$=1,
(2)原式=-4-1+$\frac{1}{2}$×($\sqrt{2}$)4=-5+2=-3

點(diǎn)評 本題考查了對數(shù)和冪的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$是奇函數(shù).
(1)求a,b的值;
(2)若對于t∈R,不等式f(2t2-k)+f(t2-2t)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)是R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,則f(-2),f(3),f(-π)的大小順序是(  )
A.f(3)>f(-2)>f(-π)B.f(-π)>f(-2)>f(3)C.f(-2)>f(3)>f(-π)D.f(-π)>f(3)>f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.解關(guān)于x的方程:
(1)lgx+lg(x-3)=1;
(2)${(\frac{2}{3})^x}•{(\frac{9}{8})^x}=\frac{27}{64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=ln(-x+1)的定義域?yàn)椋?∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為些作了四次試驗(yàn),得到的數(shù)據(jù)如下表所示:
零件的個(gè)數(shù)x(個(gè))2345
加工的時(shí)間y(小時(shí))2.5344.5
(Ⅰ)求出y關(guān)于x的線性回歸方程$\widehaty$=$\widehatbx$+$\widehata$,并在坐標(biāo)系中畫出回歸直線;
(Ⅱ)試預(yù)測加工10個(gè)零件需要多少時(shí)間?b=$\frac{{\sum_{i=1}^n{({{x_1}-\overline x})({{y_1}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_1}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_1}{y_1}-n\overline{xy}}}}{{\sum_{i=1}^n{x_1^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$,$\overline{x}$=$\frac{1}{n}\sum_{i=1}^n{x_1}$,$\overline y$=$\frac{1}{n}\sum_{i=1}^n{y_1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知a=${log_{\frac{1}{2}}}$5,b=log23,c=3-0.6,那么(  )
A.a<b<cB.a<c<bC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-3x+1,數(shù)列{an}(n∈N+)是遞增的等差數(shù)列,a1=f(x+1),a2=0,a3=f(x-1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an+2,求數(shù)列{$\frac{1}{{b}_{n}{b}_{n+1}}$}(n∈N+)的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知等比數(shù)列{an}的首項(xiàng)為a1,公比為q(q≠1),則該數(shù)列的前n項(xiàng)和Sn=Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$(q≠1)或Sn=$\frac{{a}_{1}-{a}_{n}q}{1-q}$q(q≠1).

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产激情视频在线 | 欧美一区二区视频 | 亚洲精品免费在线观看 | 欧美一区二区在线 | 日韩视频一区在线观看 | 日本三级网站在线观看 | 日韩精品网站在线观看 | 高清国产一区二区三区四区五区 | 国产成人精品a视频一区www | 久久久久久久一区 | 中文字幕一区二区在线观看 | 精品国产第一国产综合精品 | 亚洲黄色高清视频 | 日韩免费在线 | 日韩一区二区在线电影 | av自拍 | 久久久久亚洲精品 | 精品一二三区 | 日本在线视频一区二区三区 | 久久黄色| 欧美成人一区二区三区片免费 | 国产欧美精品一区二区色综合 | 成人国产精品久久 | 欧美2区 | 欧美日韩中文在线 | 日韩亚洲精品在线观看 | 欧美自拍视频 | 99精品欧美一区二区三区综合在线 | 97人人人 | 国产精品综合 | 中文字幕在线观看不卡 | 91精品国产综合久久久久久漫画 | 韩日精品 | 亚洲网站免费观看 | 国产精品1区2区 | 亚洲成av人乱码色午夜 | 黄色网亚洲 | 欧美一区二区三区视频在线观看 | 91精品国产综合久久婷婷香蕉 | 国产真实乱全部视频 | 一区二区三区免费看 |