A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{3}$ |
分析 由題意畫出圖形,結合面面平行的性質(zhì)可得,∠BCE為m、n所成角,設正四面體棱長為2,求解三角形得答案.
解答 解:如圖,
由α∥平面ECB,且α∩平面ABC=m,α∩平面ACD=n,
結合面面平行的性質(zhì)可得:m∥BC,n∥EC,
∴∠BCE為m、n所成角,
設正四面體的棱長為2,則BE=CE=$\sqrt{3}$,
則cos∠BCE=$\frac{\frac{1}{2}BC}{EC}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.
故選:A.
點評 本題考查異面直線所成角,考查空間想象能力和思維能力,體現(xiàn)了數(shù)學轉化思想方法,屬中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1或1 | B. | 1 | C. | -1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | (1,+∞) | C. | (-∞,0)∪(1,+∞) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | $\sqrt{15}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1±$\sqrt{10}$ | B. | 1$±\sqrt{10}$ | C. | -1-$\sqrt{10}$ | D. | 1-$\sqrt{10}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com