日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=cos2x+ sinxcosx.
(Ⅰ)求函數f(x)的最小正周期及單調遞增區間;
(Ⅱ)求f(x)在區間[﹣ , ]上的最大值和最小值.

【答案】解:(Ⅰ)已知函數函數f(x)=cos2x+ sinxcosx.

化解可得:f(x)= cos2x+ sin2x=sin(2x

∴函數f(x)的最小正周期T=

2x ,(k∈Z)

解得: ≤x≤

∴函數f(x)的單調遞增區間為:[ , ],(k∈Z)

(Ⅱ)由(Ⅰ)知f(x)=sin(2x

當x∈[﹣ , ]時,

可得: ≤2x

所以 sin(2x .即0≤f(x)

故得f(x)在區間在[﹣ ]上的最大值為 ,最小值為0.


【解析】(1)利用二倍角和輔助角公式將函數化為y=Asin(ωx+φ),根據正弦函數的圖象和性質可得到f(x)的單調遞增區間,(2)當x∈[﹣ , ]時,可得到 ≤2x + ,根據函數的單調性,可求得f(x)在該區間的最大值和最小值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在等差數列{an}中,a2+a7=﹣23,a3+a8=﹣29. (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設數列{an+bn}是首項為1,公比為c的等比數列,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知α∈(0, ),β∈(0, ),且滿足 cos2 + sin2 = + ,sin(2017π﹣α)= cos( π﹣β),則α+β=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 ,
(Ⅰ)若 共線,求x的值;
(Ⅱ)若 ,求x的值;
(Ⅲ)當x=2時,求 夾角θ的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)= x﹣lnx(x>0),則函數f(x)(
A.在區間(0,1)內有零點,在區間(1,+∞)內無零點
B.在區間(0,1)內有零點,在區間(1,+∞)內有零點
C.在區間(0,3),(3,+∞)均無零點
D.在區間(0,3),(3,+∞)均有零點

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某家庭進行理財投資,根據長期收益率市場預測,投資債券類穩健型產品的收益與投資額成正比,投資股票類風險型產品的收益與投資額的算術平方根成正比,已知兩類產品各投資1萬元時的收益分別為0.125萬元和0.5萬元,如圖:

(Ⅰ)分別寫出兩類產品的收益y(萬元)與投資額x(萬元)的函數關系;
(Ⅱ)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,最大收益是多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C所列邊分別為a,b,c,且 . (Ⅰ)求角A;
(Ⅱ)若 ,試判斷bc取得最大值時△ABC形狀.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨機擲兩枚質地均勻的骰子,它們向上的點數之和不超過5的概率為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線C的方程為: =1
(1)求雙曲線C的離心率;
(2)求與雙曲線C有公共的漸近線,且經過點A(﹣3,2 )的雙曲線的方程.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一级一级特黄女人精品毛片 | 精品日韩一区 | 亚洲国产精品久久久久 | 天天艹天天干天天 | 亚洲免费国产视频 | 国产精品99 | 99精品国产99久久久久久福利 | 欧美视频二区 | 国产一区免费在线观看 | 久久国产成人 | 日日久| 久久精品免费视频播放 | 米奇狠狠狠狠8877 | 精品国产三级 | 无码少妇一区二区三区 | 国产xvideos免费视频播放 | 二区久久 | 天天草天天色 | 亚洲精品视频免费 | 蜜桃久久久久久久 | 日韩三级电影网 | 欧美日韩成人影院 | 欧美国产日韩一区 | 成人在线播放器 | 亚洲精品一区二区三区在线 | 黄色网址在线免费 | 一区二区免费视频 | 在线色网 | www中文字幕 | 欧美高清不卡 | 亚洲 欧美日韩 国产 中文 | 99精品热视频 | 欧美一级在线视频 | 亚洲天堂在线观看视频 | 免费黄色的视频 | 免费黄看片| 国产一区二区影院 | 欧美日韩激情四射 | 国产精品一区免费 | 精品www| 久久精品小视频 |