日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
17.已知圓N經過點A(3,1),B(-1,3),且它的圓心在直線3x-y-2=0上.
(Ⅰ)求圓N的方程;
(Ⅱ)求圓N關于直線x-y+3=0對稱的圓的方程.
(Ⅲ)若點D為圓N上任意一點,且點C(3,0),求線段CD的中點M的軌跡方程.

分析 (Ⅰ)首先設出方程,將點坐標代入得到關于參數的方程組,通過解方程組得到參數值,從而確定其方程;
(Ⅱ)求出N(2,4)關于x-y+3=0的對稱點為(1,5),即可得到圓N關于直線x-y+3=0對稱的圓的方程;
(Ⅲ)首先設出點M的坐標,利用中點得到點D坐標,代入圓的方程整理化簡得到的中點M的軌跡方程.

解答 解:(Ⅰ)由已知可設圓心N(a,3a-2),又由已知得|NA|=|NB|,
從而有$\sqrt{(a-3)^{2}+(3a-2-1)^{2}}$=$\sqrt{(a+1)^{2}+(3a-2-3)^{2}}$,解得:a=2.
于是圓N的圓心N(2,4),半徑r=$\sqrt{10}$.
所以,圓N的方程為(x-2)2+(y-4)2=10;
(Ⅱ)設N(2,4)關于直線x-y+3=0對稱點的坐標為(m,n),
則$\left\{\begin{array}{l}{\frac{n-4}{m-2}•1=-1}\\{\frac{2+m}{2}-\frac{4+n}{2}+3=0}\end{array}\right.$,
∴m=1,n=5,
∴圓N關于直線x-y+3=0對稱的圓的方程為(x-1)2+(y-5)2=10;
(Ⅲ)設M(x,y),D(x1,y1),
則由C(3,0)及M為線段CD的中點得:$\left\{\begin{array}{l}{{x}_{1}=2x-3}\\{{y}_{1}=2y}\end{array}\right.$.
又點D在圓N:(x-2)2+(y-4)2=10上,所以有(2x-3-2)2+(2y-4)2=10,
化簡得:${(x-\frac{5}{2})^2}+{(y-2)^2}=\frac{5}{2}$.
故所求的軌跡方程為${(x-\frac{5}{2})^2}+{(y-2)^2}=\frac{5}{2}$.

點評 本題考查圓的方程,考查代入法,圓的方程一般采用待定系數法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

7.如圖,將一個正方體的表面展開,直線AB與直線CD在原來正方體中的位置關系是(  ) 
A.平行B.相交并垂直C.相交且成60°角D.異面

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.動圓M經過雙曲線x2-$\frac{{y}^{2}}{15}$=1左焦點且與直線x=4相切,則圓心M的軌跡方程是(  )
A.y2=8xB.y2=-8xC.y2=16xD.y2=-16x

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.(Ⅰ) 計算:2${\;}^{-lo{g}_{2}4}$-($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$+lg$\frac{1}{100}$+($\sqrt{2}$-1)lg1+(lg5)2+lg2•lg50
(Ⅱ)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,ABCD為菱形,PD⊥平面ABCD,連接AC、BD,交于點F,AC=6,BD=8,E是棱PB上的動點,△AEC面積的最小值是3,連接DE,
(1)求證:AC⊥DE;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.若函數y=x2+(2a-1)x+1在區間(2,+∞)上是增函數,則實數a的取值范圍是(  )
A.[-$\frac{3}{2}$,+∞)B.(-∞,-$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.(-∞,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.若對于任意實數x,|x+a|-|x+1|≤2a恒成立,則實數a的最小值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.已知函數f(x)=-x3+ax2+bx(a,b∈R)的圖象如圖所示,它與x軸相切于原點,且x軸與函數圖象所圍成區域(圖中陰影部分)的面積為$\frac{1}{12}$,則a的值為(  )
A.0B.1C.-1D.-2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.設F1,F2分別是橢圓E:x2+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<1)的左、右焦點,
(Ⅰ)若橢圓的離心率為$\frac{1}{2}$,求b的值;
(Ⅱ)過F1的直線l與E相交于A、B兩點,若|AF2|,|AB|,|BF2|成等差數列,求|AB|.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 色综合999 | 久久久xxxx| 在线视频这里只有精品 | 久久久久久毛片免费观看 | 精品久久久一区二区 | 精品一级| 欧美日韩国产精品成人 | 日韩大尺度电影在线观看 | 日韩久久网 | 国产一区二区三区久久 | 嫩草视频在线观看免费 | avhd101在线成人播放 | 成人超碰在线 | 久久九九这里只有精品 | 日韩综合一区 | 欧美综合久久 | 国产精品理论片 | 午夜爱视频 | 最新日韩在线 | 久久久精彩视频 | 亚洲精品久久久久久一区二区 | 欧美精品黄色 | 成人免费视频网址 | 一区二区精品视频在线观看 | 暖暖视频日韩欧美在线观看 | 99精品亚洲国产精品久久不卡 | 欧美午夜精品一区二区三区电影 | 国产亚洲精品久久久久动 | 在线精品亚洲欧美日韩国产 | 91久久久久久久久 | 国产伦理片在线免费观看 | 狠狠综合 | 久久精品久 | 一级欧美一级日韩片 | 日韩一区在线观看视频 | 久久久久99| 欧美成人精品在线观看 | 国产精品一区人伦免视频播放 | 成人精品视频 | 成人午夜电影在线 | 亚洲成人一区二区在线观看 |