已知平面直角坐標系中O是坐標原點,
,圓
是
的外接圓,過點(2,6)的直線為
。
(1)求圓的方程;
(2)若與圓相切,求切線方程;
(3)若被圓所截得的弦長為
,求直線
的方程。
科目:高中數學 來源: 題型:解答題
已知:以點C (t, )(t∈R , t ≠ 0)為圓心的圓與
軸交于點O, A,與y軸交于點O, B,其中O為原點.
(1)求證:△OAB的面積為定值;
(2)設直線y = –2x+4與圓C交于點M, N,若|OM| = |ON|,求圓C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題12分)如圖,設P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且|MD|=|PD|.
(Ⅰ)當P在圓上運動時,求點M的軌跡C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被曲線C所截線段的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分15分)
設有半徑為3的圓形村落,
、
兩人同時從村落中心出發。
一直向北直行;
先向東直行,出村后一段時間,改變前進方向,沿著與村落邊界相切的直線朝
所在的方向前進。
(1)若在距離中心5
的地方改變方向,建立適當坐標系,
求:改變方向后前進路徑所在直線的方程
(2)設、
兩人速度一定,其速度比為
,且后來
恰與
相遇.問兩人在何處相遇?
(以村落中心為參照,說明方位和距離)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
一動圓與圓外切,與圓
內切.
(I)求動圓圓心M的軌跡方程.(II)試探究圓心M的軌跡上是否存在點,使直線
與
的斜率
?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓C:x2+y2=r2(r>0)經過點(1,).
(1)求圓C的方程;
(2)是否存在經過點(-1,1)的直線l,它與圓C相交于A,B兩個不同點,且滿足=+(O為坐標原點)關系的點M也在圓C上?如果存在,求出直線l的方程;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com