已知圓C:x2+y2=r2(r>0)經過點(1,).
(1)求圓C的方程;
(2)是否存在經過點(-1,1)的直線l,它與圓C相交于A,B兩個不同點,且滿足=+(O為坐標原點)關系的點M也在圓C上?如果存在,求出直線l的方程;如果不存在,請說明理由.
(1)由圓C:x2+y2=r2,再由點(1,)在圓C上,得r2=12+()2=4
所以圓C的方程為
x2+y2=4;
(2)假設直線l存在,
設A(x1,y1),B(x2,y2),
M(x0,y0)
①若直線l的斜率存在,設直線l的方程為:
y-1=k(x+1),
聯立
消去y得,
(1+k2)x2+2k(k+1)x+k2+2k-3=0,
由韋達定理得x1+x2
=-=-2+,
x1x2==1+,
y1y2=k2x1x2+k(k+1)(x1+x2)+(k+1)2=-3,
因為點A(x1,y1),B(x2,y2)在圓C上,
因此,得x+y=4,
x+y=4,
由=+得x0
=,y0=,
由于點M也在圓C上,
則2+2
=4,
整理得,+3+x1x2+y1y2=4,
即x1x2+y1y2=0,所以1++(-3)=0,
從而得,k2-2k+1=0,即k=1,因此,直線l的方程為
y-1=x+1,即x-y+2=0,
②若直線l的斜率不存在,
則A(-1,),B(-1,-),M
2+2
=4-≠4,
故點M不在圓上與題設矛盾
綜上所知:k=1,直線方程為x-y+2=0
解析
科目:高中數學 來源: 題型:解答題
已知平面直角坐標系中O是坐標原點,
,圓
是
的外接圓,過點(2,6)的直線為
。
(1)求圓的方程;
(2)若與圓相切,求切線方程;
(3)若被圓所截得的弦長為
,求直線
的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知⊙C:x2+y2-2x-2y+1=0,直線l與⊙C相切且分別交x軸、y軸正向于A、B兩點,O為坐標原點,且=a,
=b(a>2,b>2).
(Ⅰ)求線段AB中點的軌跡方程.
(Ⅱ)求△ABC面積的極小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
已知圓的圓心為
,圓
:
的圓心為
,一動圓與圓
內切,與圓
外切.
(Ⅰ)求動圓圓心的軌跡方程;
(Ⅱ)在(Ⅰ)所求軌跡上是否存在一點,使得
為鈍角?若存在,求出點
橫坐標的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com