已知圓C1:與圓C2:
相交于A、B兩點,
(1)求公共弦AB所在的直線方程;
(2)求圓心在直線上,且經過A、B兩點的圓的方程.
科目:高中數學 來源: 題型:解答題
已知⊙和點
.
(Ⅰ)過點向⊙
引切線
,求直線
的方程;
(Ⅱ)求以點為圓心,且被直線
截得的弦長為4的⊙
的方程;
(Ⅲ)設為(Ⅱ)中⊙
上任一點,過點
向⊙
引切線,切點為
. 試探究:平面內是否存在一定點
,使得
為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知直線l:y=x,圓C1的圓心為(3,0),且經過(4,1)點.
(1)求圓C1的方程;
(2)若圓C2與圓C1關于直線l對稱,點A、B分別為圓C1、C2上任意一點,求|AB|的最小值;
(3)已知直線l上一點M在第一象限,兩質點P、Q同時從原點出發,點P以每秒1個單位的速度沿x軸正方向運動,點Q以每秒個單位沿射線OM方向運動,設運動時間為t秒.問:當t為何值時直線PQ與圓C1相切?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知平面直角坐標系中O是坐標原點,
,圓
是
的外接圓,過點(2,6)的直線為
。
(1)求圓的方程;
(2)若與圓相切,求切線方程;
(3)若被圓所截得的弦長為
,求直線
的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)在平面直角坐標系中,
是拋物線
的焦點,
是拋物線
上位于第一象限內的任意一點,過
三點的圓的圓心為
,點
到拋物線
的準線的距離為
.(Ⅰ)求拋物線
的方程;(Ⅱ)是否存在點
,使得直線
與拋物線
相切于點
若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分14分)
已知直線,圓
.
(Ⅰ)證明:對任意,直線
與圓
恒有兩個公共點.
(Ⅱ)過圓心作
于點
,當
變化時,求點
的軌跡
的方程.
(Ⅲ)直線與點
的軌跡
交于點
,與圓
交于點
,是否存在
的值,使得
?若存在,試求出
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com