日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
5.已知數列{an}中,a1=2,當n≥2時,$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+n-1,設bn=$\frac{{a}_{n}}{{2}^{n}}$-1,則$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{20}}$等于(  )
A.$\frac{19}{10}$B.$\frac{29}{20}$C.$\frac{40}{21}$D.$\frac{36}{19}$

分析 當n≥2時,$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+n-1,即有$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}=n+1$
可得($\frac{{a}_{2}}{{2}^{2}}-\frac{{a}_{1}}{{2}_{1}})+(\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}})+…(\frac{{a}_{n}}{{2}^{2}}-\frac{{a}_{n-1}}{{2}^{n-1}})$+($\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}}$)+…+($\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}$)=1+2+…+(n-1)
bn=$\frac{{a}_{n}}{{2}^{n}}$-1=$\frac{n(n-1)}{2}$,$\frac{1}{{b}_{n}}$=2($\frac{1}{n-1}-\frac{1}{n}$)
則$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{20}}$+…+$\frac{1}{{b}_{n}}$=2($\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n-1}-\frac{1}{n}$)即可求解

解答 解:∵當n≥2時,$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+n-1,∴$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}=n+1$
$\frac{{a}_{2}}{{2}^{2}}-\frac{{a}_{1}}{{2}^{1}}=1,\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}}=2,…\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}=n-1$
∴($\frac{{a}_{2}}{{2}^{2}}-\frac{{a}_{1}}{{2}_{1}})+(\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}})+…(\frac{{a}_{n}}{{2}^{2}}-\frac{{a}_{n-1}}{{2}^{n-1}})$+($\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}}$)+…+($\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}$)=1+2+…+(n-1)
∴$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{1}}{{2}^{1}}=\frac{(n-1)(1+n-1)}{2}=\frac{n(n-1)}{2}$
∴bn=$\frac{{a}_{n}}{{2}^{n}}$-1=$\frac{n(n-1)}{2}$,$\frac{1}{{b}_{n}}$=2($\frac{1}{n-1}-\frac{1}{n}$)
∴則$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{20}}$+…+$\frac{1}{{b}_{n}}$=2($\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n-1}-\frac{1}{n}$)
故$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{20}}$等于2(1-$\frac{1}{20}$)=$\frac{19}{10}$
故選:A

點評 本題考查了累加法求數列通項,裂項相消法求和,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦點分別為F1、F2.左、右頂點分別為A、B,虛軸的上、下端點分別為C、D.若線段BC與雙曲線的漸近線的交點為E,且∠BF1E=∠CF1E,則雙曲線的離心率為(  )
A.1+$\sqrt{6}$B.1+$\sqrt{5}$C.1+$\sqrt{3}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.將一張邊長為12cm的正方形紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)所示放置.如果正四棱錐的主視圖是等邊三角形,如圖(3)所示,則正四棱錐的體積是(  )
A.$\frac{32}{3}$$\sqrt{6}$cm3B.$\frac{64}{3}$$\sqrt{6}$cm3C.$\frac{32}{3}$$\sqrt{2}$cm3D.$\frac{64}{3}$$\sqrt{2}$cm3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.如圖所示給出的是計算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2017}$的值的一個程序框圖,其中判斷框內應填入的條件是(  )
A.i>1010B.i<1010C.i>1009D.i<1009

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.在△ABC中,已知a=5,b=5$\sqrt{3}$.C=30°,則角C的對邊c的長為(  )
A.5$\sqrt{13}$B.5$\sqrt{11}$C.5$\sqrt{7}$D.5

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.某數學興趣小組有3名男生和2名女生,從中任選出2名同學參加數學競賽,那么對立的兩個事件為(  )
A.恰有1名女生與恰有2名女生B.至少有1名男生與全是男生
C.至少有1名男生與至少有1名女生D.至少有1名女生與全是男生

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.“直線y=x+b與圓x2+y2=1相交”是“0<b<1”的(  )條件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知復數z+i,$\frac{z}{2+i}$均為實數,且在復平面內,(z+ai)2的對應點在第四象限內,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.若$tanθ=\frac{1}{2}$,則cos2θ+sin2θ=(  )
A.$\frac{4}{5}$B.$\frac{6}{5}$C.$\frac{8}{5}$D.2

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品久久九九 | 精一区二区 | 91原创视频在线观看 | 精品国产一区二区三区日日嗨 | 久久久久久91 | 最新永久地址 | 亚洲午夜精品 | 欧美色综合一区二区三区 | 国产视频福利在线 | 欧美精品在线免费观看 | 国产精品99久久免费观看 | 国产精品无 | 免费av在线播放 | 久久精品一区二区三区四区毛片 | 欧美成人精品一区二区男人小说 | 欧美精品欧美极品欧美激情 | 精品视频一区二区三区在线观看 | 日本亚洲欧美 | 成人亚洲免费视频 | 成人国产精品久久 | av国产精品毛片一区二区小说 | 啪一啪操一操 | 久久成人精品 | 亚洲一区二区三区四区五区午夜 | 国产精品久久久久久久久免费 | 日本妇人成熟免费视频 | 99re视频在线播放 | 黄页网站大全在线观看 | 午夜操操| 美女91 | 久久久国产一区二区三区 | 免费的黄色网 | 一级视频在线免费观看 | 久久亚洲一区二区三区四区 | 啪啪网免费 | 99精品欧美一区二区三区 | 久久韩剧网 | 成年人网站免费在线观看 | 美女久久久久 | 国产精品久久一区性色av图片 | 日本在线播放 |