【題目】已知函數.
()當
時,求此函數對應的曲線在
處的切線方程.
()求函數
的單調區間.
()對
,不等式
恒成立,求
的取值范圍.
【答案】()
;(
)見解析;(
)當
時,
,當
時
【解析】試題分析:(1)利用導數的意義,求得切線方程為;(2)求導得
,通過
,
,
分類討論,得到單調區間;(3)分離參數法,得到
,通過求導,得
,
.
試題解析:
()當
時,
,
∴,
,
,∴切線方程
.
()
.
令,則
或
,
當時,
在
,
上為增函數.
在上為減函數,
當時,
在
上為增函數,
當時,
在
,
上為單調遞增,
在上單調遞減.
()當
時,
,
當時,由
得
,對
恒成立.
設,則
,
令得
或
,
極小 |
,∴
,
.
點睛:本題考查導數在函數綜合題型中的應用。含參的函數單調性討論,考查學生的分類討論能力,本題中,結合導函數的形式,分類討論;含參的恒成立問題,一般采取分離參數法,解決恒成立。
【題型】解答題
【結束】
20
【題目】已知集合,集合
且滿足:
,
,
與
恰有一個成立.對于
定義
.
()若
,
,
,
,求
的值及
的最大值.
()取
,
,
,
中任意刪去兩個數,即剩下的
個數的和為
,求證:
.
()對于滿足
的每一個集合
,集合
中是否都存在三個不同的元素
,
,
,使得
恒成立,并說明理由.
科目:高中數學 來源: 題型:
【題目】極坐標與參數方程
已知曲線:
(
為參數),
:
(
為參數).
(1)將、
的方程化為普通方程;
(2)若與
交于M、N,與x軸交于P,求
的最小值及相應
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電視臺為宣傳本市,隨機對本市內歲的人群抽取了
人,回答問題“本市內著名旅游景點有哪些” ,統計結果如圖表所示.
組號 | 分組 | 回答正確的人數 | 回答正確的人數占本組的頻率 |
第1組 | [15,25) | a | 0.5 |
第2組 | [25,35) | 18 | x |
第3組 | [35,45) | b | 0.9 |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 | y |
(1)分別求出的值;
(2)根據頻率分布直方圖估計這組數據的中位數(保留小數點后兩位)和平均數;
(3)若第1組回答正確的人員中,有2名女性,其余為男性,現從中隨機抽取2人,求至少抽中1名女性的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四種說法中:
①有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱
②相等的線段在直觀圖中仍然相等
③一個直角三角形繞其一邊旋轉一周所形成的封閉圖形叫圓錐
④用一個平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺正確的個數是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某旅行社為調查市民喜歡“人文景觀”景點是否與年齡有關,隨機抽取了50名市民,得到數據如下表:
喜歡 | 不喜歡 | 合計 | |
大于40歲 | 20 | 5 | 25 |
20歲至40歲 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
(1)判斷是否有99.5%的把握認為喜歡“人文景觀”景點與年齡有關?(保留小數點后3位)
(2)用分層抽樣的方法從喜歡“人文景觀”景點的市民中隨機抽取3人作進一步調查,將這3位市民作為一個樣本,從中任選2人,求恰有1位“大于40歲”的市民和1位“20歲至40歲”的市民的概率.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[2019·牡丹江一中]某校從參加高一年級期末考試的學生中抽取60名學生的成績(均為整數),其成績的頻率分布直方圖如圖所示,由此估計此次考試成績的中位數,眾數和平均數分別是( )
A. 73.3,75,72 B. 73.3,80,73
C. 70,70,76 D. 70,75,75
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com