【題目】教材曾有介紹:圓上的點
處的切線方程為
。我們將其結論推廣:橢圓
上的點
處的切線方程為
,在解本題時可以直接應用。已知,直線
與橢圓
有且只有一個公共點.
(1)求的值;
(2)設為坐標原點,過橢圓
上的兩點
、
分別作該橢圓的兩條切線
、
,且
與
交于點
。當
變化時,求
面積的最大值;
(3)在(2)的條件下,經過點作直線
與該橢圓
交于
、
兩點,在線段
上存在點
,使
成立,試問:點
是否在直線
上,請說明理由.
【答案】(1)(2)
(3)見解析
【解析】
(1)將直線y=x代入橢圓方程,得到x的方程,由直線和橢圓相切的條件:判別式為0,解方程可得a的值;(2)設切點A(x1,y1),B(x2,y2),可得切線
,
,
,再將M代入上式,結合兩點確定一條直線,可得切點弦方程,AB的方程為x+my=1,將直線與橢圓方程聯立,運用韋達定理,求得△OAB的面積,化簡整理,運用基本不等式即可得到所求最大值;(3)點
在直線
上,因為
設、
、
,且
,于是
,向量坐標化,得
、
、
、
,將
代入橢圓方程,結合
、
在橢圓上,整理化簡得
,即
在直線
上.
(1)聯立,整理得
依題意,即
(2)設、
,于是直線
、
的方程分別為
、
將代入
、
的方程得
且
所以直線的方程為
聯立
顯然,由
,
是該方程的兩個實根,有
,
面積
即
當且僅當時,“=”成立,
取得最大值
(3)點在直線
上,因為
設、
、
,且
于是,即
、
、
、
又,
,
,即
在直線
上.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,動點
到定點
的距離與
到定直線
的距離的比為
,動點
的軌跡記為
.
(1)求軌跡的方程;
(2)若點在軌跡
上運動,點
在圓
上運動,且總有
,
求的取值范圍;
(3)過點的動直線
交軌跡
于
兩點,試問:在此坐標平面上是否存在一個定點
,使得無論
如何轉動,以
為直徑的圓恒過點
?若存在,求出點
的坐標.若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公交公司為了方便市民出行,科學規劃車輛投放,在一個人員密集流動地段增設一個起點站,為了研究車輛發車間隔時間x與乘客等候人數y之間的關系,經過調查得到如下數據:
間隔時間x/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調查小組先從這6組數據中選取4組數據求線性回歸方程,再用剩下的2組數據進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數,再求
與實際等候人數y的差,若差值的絕對值都不超過1,則稱所求方程是“恰當回歸方程”.
(1)從這6組數據中隨機選取4組數據,求剩下的2組數據的間隔時間相鄰的概率;
(2)若選取的是中間4組數據,求y關于x的線性回歸方程,并判斷此方程是否是“恰當回歸方程”.
附:對于一組數據,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓:
的離心率為
,短軸端點與兩焦點圍成的三角形面積為
.
(1)求橢圓的方程;
(2)設直線與橢圓
交于
兩點,且過點
,
為坐標原點,當△
為直角三角形,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,
底面
,
分別是
的中點,
,
,
.
(I)證明:;
(II)求直線與平面
所成角的正弦值;
(III)在邊上是否存在點
,使
與
所成角的余弦值為
,若存在,確定點
位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,菱形中,
,
,
于
.將
沿
翻折到
,使
,如圖2.
(Ⅰ)求證:平面平面
;
(Ⅱ)求直線A′E與平面A′BC所成角的正弦值;
(Ⅲ)設為線段
上一點,若
平面
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場營銷人員進行某商品的市場營銷調查時發現,每回饋消費者一定的點數,該商品每天的銷量就會發生一定的變化,經過試點統計得到以下表:
反饋點數t | 1 | 2 | 3 | 4 | 5 |
銷量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(Ⅰ)經分析發現,可用線性回歸模型擬合當地該商品銷量
(千件)與返還點數
之間的相關關系.試預測若返回6個點時該商品每天的銷量;
(Ⅱ)若節日期間營銷部對商品進行新一輪調整.已知某地擬購買該商品的消費群體十分龐大,經營銷調研機構對其中的200名消費者的返點數額的心理預期值進行了一個抽樣調查,得到如下一份頻數表:
返還點數預期值區間 (百分比) | [1,3) | [3,5) | [5,7) | [7,9) | [9,11) | [11,13) |
頻數 | 20 | 60 | 60 | 30 | 20 | 10 |
(1)求這200位擬購買該商品的消費者對返點點數的心理預期值的樣本平均數及中位數的估計值(同一區間的預期值可用該區間的中點值代替;估計值精確到0.1);
(2)將對返點點數的心理預期值在和
的消費者分別定義為“欲望緊縮型”消費者和“欲望膨脹型”消費者,現采用分層抽樣的方法從位于這兩個區間的30名消費者中隨機抽取6名,再從這6人中隨機抽取3名進行跟蹤調查,設抽出的3人中 “欲望緊縮型”消費者的人數為隨機變量
,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點滿足
,記M的軌跡為曲線C,直線l:
(
)交曲線C于P,Q兩點,點P在第一象限,
軸,垂足為E,連接QE并延長交曲線C于點G.
(1)求曲線C的方程,并說明曲線C是什么曲線;
(2)若,求
的面積.
(3)求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A、B、C所對的邊分別為a、b、c,且sinAsinBcosB+sin2BcosA=2 sinCcosB.
(1)求tanB的值;
(2)若△ABC的外接圓半徑為R,求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com