分析 (1)根據h(2)=4求得指數函數h(x)的解析式,再根據f(0)=0,求得b的值,可得f(x)的解析式.
(2)根據f(x)在R上單調遞減,可得2x-1<x+1,求得x的范圍.
解答 解:(1)由于h(x)是指數函數,可設h(x)=ax,a>0,a≠1,
∵h(2)=a2=4,∴a=2,∴函數f(x)=$\frac{b-h(x)}{1+h(x)}$=$\frac{b{-2}^{x}}{1{+2}^{x}}$.
∵函數f(x)=$\frac{b-h(x)}{1+h(x)}$是定義域為R的奇函數,故有f(0)=$\frac{b-1}{1+1}$=0,∴b=1,
∴f(x)=$\frac{1{-2}^{x}}{1{+2}^{x}}$.
(2)∵f(x)=$\frac{1{-2}^{x}}{1{+2}^{x}}$=$\frac{2}{{2}^{x}+1}$-1,在R上單調遞減,
故由不等式f(2x-1)>f(x+1),可得2x-1<x+1,求得x<$\frac{2}{3}$,
即原不等式的解集為{x|x<$\frac{2}{3}$ }.
點評 本題主要考查用待定系數法求函數的解析式,函數的奇偶性和單調性的綜合應用,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com