【題目】已知數(shù)列滿足
,
.
(1)求證:數(shù)列為等差數(shù)列;
(2)求數(shù)列的前
項(xiàng)和
.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)根據(jù)數(shù)列的遞推關(guān)系,利用構(gòu)造法,由可得
,結(jié)合等差數(shù)列的定義即可證明
是等差數(shù)列;(2)根據(jù)(1)求出數(shù)列
的通項(xiàng)公式
,利用錯(cuò)位相減法,結(jié)合等比數(shù)列求和公式進(jìn)行求解即可.
試題解析:(1)證明:因?yàn)?/span>(常數(shù)),
,所以數(shù)列
是以1為首項(xiàng),公差為1的等差數(shù)列.
(2)解:由(1)可知, ,所以
,
所以, ①
, ②
①-②得,
所以
,
所以
.
【易錯(cuò)點(diǎn)晴】本題主要考查數(shù)列的遞推關(guān)系、等差數(shù)列的定義及等比數(shù)列的求和公式,“錯(cuò)位相減法”求數(shù)列的和,屬于中檔題. “錯(cuò)位相減法”求數(shù)列的和是重點(diǎn)也是難點(diǎn),利用“錯(cuò)位相減法”求數(shù)列的和應(yīng)注意以下幾點(diǎn):①掌握運(yùn)用“錯(cuò)位相減法”求數(shù)列的和的條件(一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的積);②相減時(shí)注意最后一項(xiàng) 的符號;③求和時(shí)注意項(xiàng)數(shù)別出錯(cuò);④最后結(jié)果一定不能忘記等式兩邊同時(shí)除以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}為單調(diào)遞增數(shù)列,首項(xiàng)a1=4,且滿足an+12+an2+16=8(an+1+an)+2an+1an , n∈N* , 則a1﹣a2+a3﹣a4+…+a2n﹣1﹣a2n=( )
A.﹣2n(2n﹣1)
B.﹣3n(n+3)
C.﹣4n(2n+1)
D.﹣6n(n+1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD和矩形ACEF所在的平面互相垂直, ,AF=1,M是線段EF的中點(diǎn).
(1)求證:AM∥平面BDE;
(2)求證:AM⊥平面BDF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某工廠每天固定成本是4萬元,每生產(chǎn)一件產(chǎn)品成本增加100元,工廠每件產(chǎn)品的出廠價(jià)定為元時(shí),生產(chǎn)
件產(chǎn)品的銷售收入是
(元),
為每天生產(chǎn)
件產(chǎn)品的平均利潤(平均利潤=總利潤/總產(chǎn)量).銷售商從工廠每件
元進(jìn)貨后又以每件
元銷售,
,其中
為最高限價(jià)
,
為銷售樂觀系數(shù),據(jù)市場調(diào)查,
是由當(dāng)
是
,
的比例中項(xiàng)時(shí)來確定.
(1)每天生產(chǎn)量為多少時(shí),平均利潤
取得最大值?并求
的最大值;
(2)求樂觀系數(shù)的值;
(3)若,當(dāng)廠家平均利潤最大時(shí),求
與
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體的底面
是邊長為2的正方形,
底面
,
,且
.
(Ⅰ)記線段的中點(diǎn)為
,在平面
內(nèi)過點(diǎn)
作一條直線與平面
平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線與平面
所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)=2cos2x﹣2acosx﹣1﹣2a的最小值為g(a),a∈R
(1)求g(a);
(2)若g(a)= ,求a及此時(shí)f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)非零向量 、
不共線.
(1)若 =
+
,
=2
+8
,
=3(
﹣
),求證:A、B、D三點(diǎn)共線;
(2)求實(shí)數(shù)k使k +
與2
+k
共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com