【題目】已知某工廠每天固定成本是4萬元,每生產(chǎn)一件產(chǎn)品成本增加100元,工廠每件產(chǎn)品的出廠價(jià)定為元時(shí),生產(chǎn)
件產(chǎn)品的銷售收入是
(元),
為每天生產(chǎn)
件產(chǎn)品的平均利潤(平均利潤=總利潤/總產(chǎn)量).銷售商從工廠每件
元進(jìn)貨后又以每件
元銷售,
,其中
為最高限價(jià)
,
為銷售樂觀系數(shù),據(jù)市場調(diào)查,
是由當(dāng)
是
,
的比例中項(xiàng)時(shí)來確定.
(1)每天生產(chǎn)量為多少時(shí),平均利潤
取得最大值?并求
的最大值;
(2)求樂觀系數(shù)的值;
(3)若,當(dāng)廠家平均利潤最大時(shí),求
與
的值.
【答案】(1)400,200;(2);(3)
,
.
【解析】試題分析:(1)先求出總利潤=,依據(jù)(平均利潤=總利潤/總產(chǎn)量)可得
,利用均值不等式得最大利潤;(2)由已知得
,結(jié)合比例中項(xiàng)的概念可得
,兩邊同時(shí)除以
將等式化為
的方程,解出方程即可;(3)利用
平均成本
平均利潤
,結(jié)合廠家平均利潤最大時(shí)(由(1)的結(jié)果)可得
的值,利用
可得
的值.
試題解析:(1)依題意總利潤=,
=,
,
此時(shí)
,
,
即,每天生產(chǎn)量為400件時(shí),平均利潤最大,最大值為200元 .
(2)由得
,
是
的比例中項(xiàng),
,
兩邊除以得
,
解得
.
(3)廠家平均利潤最大, 元,
每件產(chǎn)品的毛利為,
,
元,
(元),
元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).
(1)證明:BE∥平面ADP;
(2)求直線BE與平面PDB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V=
,求A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=kx﹣1與雙曲線x2﹣y2=1的左支交于A,B兩點(diǎn).
(1)求斜率k的取值范圍;
(2)若直線l2經(jīng)過點(diǎn)P(﹣2,0)及線段AB的中點(diǎn)Q且l2在y軸上截距為﹣16,求直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是橢圓
的長軸與短軸的一個端點(diǎn),
是橢圓的左、右焦點(diǎn),以
點(diǎn)為圓心、3為半徑的圓與以
點(diǎn)為圓心、1為半徑的圓的交點(diǎn)在橢圓
上,且
.
(1)求橢圓的方程;
(2)設(shè)為橢圓
上一點(diǎn),直線
與
軸交于點(diǎn)
,直線
與
軸交于點(diǎn)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,以橢圓的一個短軸端點(diǎn)及兩個焦點(diǎn)構(gòu)成的三角形的面積為
,圓C方程為
.
(1)求橢圓及圓C的方程;
(2)過原點(diǎn)O作直線l與圓C交于A,B兩點(diǎn),若,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足
,
.
(1)求證:數(shù)列為等差數(shù)列;
(2)求數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作兩個銳角α,β,它們的終邊分別交單位圓于A,B兩點(diǎn).已知A,B兩點(diǎn)的橫坐標(biāo)分別是 ,
.
(1)求tan(α+β)的值;
(2)求α+2β的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com