日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】已知函數(shù)f(x)=(x2﹣x﹣1)ex
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若方程a( +1)+ex=ex在(0,1)內(nèi)有解,求實數(shù)a的取值范圍.

【答案】
(1)解: f′(x)=(x2+x﹣2)ex=(x﹣1)(x+2)ex

令f′(x)>0,解得:x>1或x<﹣2,

令f′(x)<0,解得:﹣2<x<1,

故f(x)在(﹣∞,﹣2)遞增,在(﹣2,1)遞減,在(1,+∞)遞增;


(2)方程a( +1)+ex=ex可化為ex﹣ax2+(a﹣e)x=0,

令g(x)=ex﹣ax2+(a﹣e)x,則g(x)在(0,1)內(nèi)有零點,易知g(0)=1,g(1)=0,

g′(x)=ex﹣2ax+a﹣e,設(shè)g′(x)=h(x),則h′(x)=ex﹣2a,

①a<0時,h′(x)>0,即h(x)在區(qū)間(0,1)遞增,h(0)=1+a﹣e<0,

h(1)=﹣a>0,即h(x)在區(qū)間(0,1)只有1個零點x1

故g(x)在(0,x1)遞減,在(x1,1)遞增,

而g(0)=1>0,g(1)=0,得g(x1)<g(1)=0,故g(x)在(0,x1)內(nèi)存在唯一零點;

②當0≤a≤ 時,h′(x)>0,即h(x)在區(qū)間(0,1)遞增,

h(x)<h(1)=﹣a≤0,得g(x)在(0,1)遞減,得g(x)在(0,1)無零點;

③當 <a< 時,令h′(x)=0,得x=ln(2a)∈(0,1),

∴h(x)在區(qū)間(0,ln(2a))上遞減,在(ln(2a),1)遞增,

h(x)在區(qū)間(0,1)上存在最小值h(ln(2a)),

故h(ln(2a))<h(1)=﹣a<0,h(0)=1+a﹣e<a﹣ <0,

<a< 時,x∈(0,1),都有g(shù)′(x)<0,g(x)在(0,1)遞減,

又g(0)=1,g(1)=0,故g(x)在(0,1)內(nèi)無零點;

④a≥ 時,h′(x)<0,h(x)在區(qū)間(0,1)遞減,h(1)=﹣a<0,h(0)=1+a﹣e,

若h(0)=1+a﹣e>0,得a>e﹣1>

則h(x)在區(qū)間(0,1)只有1個零點x2

故g(x)在(0,x2)遞增,在(x2,1)遞減,

而g(0)=1,g(1)=0,得g(x)在(0,1)無零點,

<a時,則h(0)=1+a﹣e<0,得g(x)在(0,1)遞減,得g(x)在(0,1)內(nèi)無零點,

綜上,a<0時,方程a( +1)+ex=ex在(0,1)內(nèi)有解.


【解析】(1)對f(x)求導,討論函數(shù)的單調(diào)區(qū)間即可,(2)問題可化為ex﹣ax2+(a﹣e)x=0,令g(x)=ex﹣ax2+(a﹣e)x,則g(x)在(0,1)內(nèi)由零點,討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而確定a的范圍即可.
【考點精析】掌握利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導數(shù)是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知非零平面向量 ,則“| |=| |+| |”是“存在非零實數(shù)λ,使 ”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,平面PAC⊥平面ABC,PA⊥AC,AB⊥BC.設(shè)D,E分別為PA,AC中點.
(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)求證:BC⊥平面PAB;
(Ⅲ)試問在線段AB上是否存在點F,使得過三點 D,E,F(xiàn)的平面內(nèi)的任一條直線都與平面PBC平行?若存在,指出點F的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了130t該農(nóng)產(chǎn)品.以X(單位:t,100≤X≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

(Ⅰ)將T表示為X的函數(shù);
(Ⅱ)根據(jù)直方圖估計利潤T不少于57000元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)x,y滿足不等式組 ,若目標函數(shù)z=kx+y僅在點(1,1)處取得最小值,則實數(shù)k的取值范圍是 (  )
A.(﹣1,+∞)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x2+ax+b)ex , 當b<1時,函數(shù)f(x)在(﹣∞,﹣2),(1,+∞)上均為增函數(shù),則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log2(|x﹣1|+|x+2|﹣a).
(Ⅰ)當a=7時,求函數(shù)f(x)的定義域;
(Ⅱ)若關(guān)于x的不等式f(x)≥3的解集是R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,且f(1)=1,f(﹣2)=4.
(1)求a、b的值;
(2)已知定點A(1,0),設(shè)點P(x,y)是函數(shù)y=f(x)(x<﹣1)圖象上的任意一點,求|AP|的最小值,并求此時點P的坐標;
(3)當x∈[1,2]時,不等式 恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓E: =1(a>b>0)的左頂點為A(﹣2,0),離心率為 ,過點A的直線l與橢圓E交于另一點B,點C為y軸上的一點.

(1)求橢圓E的標準方程;
(2)若△ABC是以點C為直角頂點的等腰直角三角形,求直線l的方程.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品九九| 特级理论片 | 午夜一区二区三区 | 免费看男女www网站入口在线 | 久久一区二区三区四区五区 | 午夜精品在线观看 | 国产69精品99久久久久久宅男 | 国产精品一区2区 | 欧美福利二区 | 美女日批视频在线观看 | 亚洲蜜臀av乱码久久精品蜜桃 | 国产精品18久久久久久首页狼 | 青草视频在线免费观看 | 日韩在线播放视频 | 久久三区| 在线a视频网站 | 亚洲精品乱码8久久久久久日本 | 亚洲国产区| 福利视频一区二区三区 | 午夜a级理论片915影院 | www.日韩| 欧美中文字幕一区 | 欧美一区久久 | 99热影院| 福利视频一区 | 国产视频欧美 | 99久久久国产精品美女 | 日韩不卡 | 亚洲天堂av中文字幕 | 欧美电影一区 | 精品视频久久久 | 久久99精品久久久久久琪琪 | 91伊人| 日本a在线播放 | 亚洲毛片网站 | 久久精品国产一区二区三区不卡 | 国产精品特级毛片一区二区三区 | 日本草草影院 | 97人人做人人人难人人做 | 久久久999国产 | 日韩成人在线观看 |