【題目】已知定義在實數集R的函數f(x)滿足f(1)=4,且f(x)導函數f′(x)<3,則不等式f(lnx)>3lnx+1的解集為( )
A.(1,+∞)
B.(e,+∞)
C.(0,1)
D.(0,e)
【答案】D
【解析】設t=lnx,
則不等式f(lnx)>3lnx+1等價為f(t)>3t+1,
設g(x)=f(x)﹣3x﹣1,
則g′(x)=f′(x)﹣3,
∵f(x)的導函數f′(x)<3,
∴g′(x)=f′(x)﹣3<0,此時函數單調遞減,
∵f(1)=4,
∴g(1)=f(1)﹣3﹣1=0,
則當x>1時,g(x)<g(1)=0,
即g(x)<0,則此時g(x)=f(x)﹣3x﹣1<0,
即不等式f(x)>3x+1的解為x<1,
即f(t)>3t+1的解為t<1,
由lnx<1,解得0<x<e,
即不等式f(lnx)>3lnx+1的解集為(0,e),
故選:D.
構造函數g(x)=f(x)﹣2x﹣1,求函數的導數,判斷函數的單調性 即可得到結論
科目:高中數學 來源: 題型:
【題目】下列命題中錯誤的是( )
A.若α⊥β,aα,則a⊥β
B.若m∥n,n⊥β,mα,則α⊥β
C.若α⊥γ,β⊥γ,α∩β=l,則l⊥γ
D.若α⊥β,α∩β=AB,a∥α,a⊥AB,則a⊥β
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】式子σ(a,b,c)滿足σ(a,b,c)=σ(b,c,a)=σ(c,a,b),則稱σ(a,b,c)為輪換對稱式.給出如下三個式子:①σ(a,b,c)=abc; ②σ(a,b,c)=a2﹣b2+c2; ③σ(A,B,C)=cosCcos(A﹣B)﹣cos2C(A,B,C是△ABC的內角).其中,為輪換對稱式的個數是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,則f(lg(lg2))=( )
A.﹣5
B.﹣1
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我們知道:“平面中到定點等于定長的點軌跡是圓”拓展至空間:“空間中到定點的距離等于定長的點的軌跡是球”,類似可得:已知A(﹣1,0,0),B(1,0,0),則點集{P(x,y,z)||PA|﹣|PB|=1}在空間中的軌跡描述正確的是( )
A.以A,B為焦點的雙曲線繞軸旋轉而成的旋轉曲面
B.以A,B為焦點的橢球體
C.以A,B為焦點的雙曲線單支繞軸旋轉而成的旋轉曲面
D.以上都不對
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com