【題目】式子σ(a,b,c)滿足σ(a,b,c)=σ(b,c,a)=σ(c,a,b),則稱σ(a,b,c)為輪換對稱式.給出如下三個式子:①σ(a,b,c)=abc; ②σ(a,b,c)=a2﹣b2+c2; ③σ(A,B,C)=cosCcos(A﹣B)﹣cos2C(A,B,C是△ABC的內角).其中,為輪換對稱式的個數是( )
A.0
B.1
C.2
D.3
【答案】C
【解析】解:根據①σ(a,b,c)=abc,可得σ(b,c,a)=bca,σ(c,a,b)=cab,
∴σ(a,b,c)=σ(b,c,a)=σ(c,a,b),故①是輪換對稱式.
②根據函數σ(a,b,c)=a2﹣b2+c2 ,
則σ(b,c,a)=b2﹣c2+a2 , σ(a,b,c)≠σ(b,c,a)故不是輪換對稱式.
③由σ(A,B,C)=cosCcos(A﹣B)﹣cos2C=cosC×[cos(A﹣B)﹣cosC]
=cosC×[cos(A﹣B)+cos(A+B)]=cosC×2cosAcosB=2cosAcosBcosC
同理可得σ(B,C,A)=2cosAcosBcosC,σ(C,A,B)=2cosAcosBcosC,
∴σ(A,B,C)=σ(B,C,A)=σ(C,A,B),故③是輪換對稱式,
故選:C.
科目:高中數學 來源: 題型:
【題目】“φ=π”是“曲線y=sin(2x+φ)過坐標原點”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】采用系統抽樣方法從960人中抽取32人做問卷調查,為此將他們隨機編號為1,2,…,960,分組后在第一組采用簡單隨機抽樣的方法抽到的號碼為9.抽到的32人中,編號落入區間[1,450]的人做問卷A,編號落入區間[451,750]的人做問卷B,其余的人做問卷C.則抽到的人中,做問卷B的人數為( )
A.7
B.9
C.10
D.15
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數y=f(x)的極值點.已知a,b是實數,1和﹣1是函數f(x)=x3+ax2+bx的兩個極值點.
(1)求a和b的值;
(2)設函數g(x)的導函數g′(x)=f(x)+2,求g(x)的極值點;
(3)設h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函數y=h(x)的零點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在實數集R的函數f(x)滿足f(1)=4,且f(x)導函數f′(x)<3,則不等式f(lnx)>3lnx+1的解集為( )
A.(1,+∞)
B.(e,+∞)
C.(0,1)
D.(0,e)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】安排一張有5個獨唱節目和3個合唱節目的節目單,要求合唱節目不連排而且不排在第一個節目,那么不同的節目單有( )
A.7200種
B.1440種
C.1200種
D.2880種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的各項都是正數,且對任意n∈N* , 都有4Sn=an2+2an , 其中Sn為數列{an}的前n項和,則數列{an}的通項公式為an=
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com