【題目】在直角坐標系中,曲線的參數方程為
(
為參數),以
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)將曲線上各點的縱坐標伸長為原來的
倍(橫坐標不變)得到曲線
,求
的參數方程;
(2)若,
分別是直線
與曲線
上的動點,求
的最小值.
科目:高中數學 來源: 題型:
【題目】三個班共有
名學生,為調查他們的上網情況,通過分層抽樣獲得了部分學生一周的上網時長,數據如下表(單位:小時):
| |
| |
|
(1)試估計班的學生人數;
(2)從這120名學生中任選1名學生,估計這名學生一周上網時長超過15小時的概率;
(3)從A班抽出的6名學生中隨機選取2人,從B班抽出的7名學生中隨機選取1人,求這3人中恰有2人一周上網時長超過15小時的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別為
,
,若橢圓經過點
,且△PF1F2的面積為2.
(1)求橢圓的標準方程;
(2)設斜率為1的直線與以原點為圓心,半徑為
的圓交于A,B兩點,與橢圓C交于C,D兩點,且
(
),當
取得最小值時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,已知棱
,
,
兩兩垂直,長度分別為1,2,2.若
(
),且向量
與
夾角的余弦值為
.
(1)求的值;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等差數列的公差
,數列
的前
項和為
,滿足
,且
,
.若實數
,則稱
具有性質
.
(1)請判斷、
是否具有性質
,并說明理由;
(2)設為數列
的前
項和,
,且
恒成立.求證:對任意的
,實數
都不具有性質
;
(3)設是數列
的前
項和,若對任意的
,
都具有性質
,求所有滿足條件的
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
,上頂點為A,過
的直線
與y軸交于點M,滿足
(O為坐標原點),且直線l與直線
之間的距離為
.
(1)求橢圓C的方程;
(2)在直線上是否存在點P,滿足
?存在,指出有幾個這樣的點(不必求出點的坐標);若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過橢圓的四個頂點與坐標軸垂直的四條直線圍成的矩形
(
是第一象限內的點)的面積為
,且過橢圓
的右焦點
的傾斜角為
的直線過點
.
(1)求橢圓的標準方程
(2)若射線與橢圓
的交點分別為
.當它們的斜率之積為
時,試問
的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com