【題目】已知橢圓:
的左、右焦點分別為
,
,若橢圓經(jīng)過點
,且△PF1F2的面積為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)斜率為1的直線與以原點為圓心,半徑為
的圓交于A,B兩點,與橢圓C交于C,D兩點,且
(
),當(dāng)
取得最小值時,求直線
的方程.
【答案】(1) ;(2)
.
【解析】
(1)根據(jù)的面積求得
的值,再利用橢圓過點
及
,求得
的值,從而求得橢圓的方程;
(2)設(shè)直線的方程為
,由直線和圓、橢圓都相交,求得
,再利用弦長公式分別計算
,
,從而建立
的函數(shù)關(guān)系式,當(dāng)
取得最小值時,可求得
的值,從而得到直線
的方程.
解:(1)由的面積可得
,即
,∴
.①
又橢圓過點
,∴
.②
由①②解得,
,故橢圓
的標(biāo)準(zhǔn)方程為
.
(2)設(shè)直線的方程為
,則原點到直線
的距離
,
由弦長公式可得.
將代入橢圓方程
,得
,
由判別式,解得
.
由直線和圓相交的條件可得,即
,也即
,
設(shè),
,則
,
,
由弦長公式,得.
由,得
.
∵,∴
,則當(dāng)
時,
取得最小值
,
此時直線的方程為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,四邊形
是矩形,平面
平面
,
,
,
,
為
的中點,
為線段
上的一點.
(1)求證:;
(2)若二面角的大小為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點為拋物線
的焦點,過點
任作兩條互相垂直的直線
,
,分別交拋物線
于
,
,
,
四點,
,
分別為
,
的中點.
(1)求證:直線過定點,并求出該定點的坐標(biāo);
(2)設(shè)直線交拋物線
于
,
兩點,試求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】陜西關(guān)中的秦腔表演樸實,粗獷,細(xì)膩,深刻,再有電子布景的獨(dú)有特效,深得觀眾喜愛.戲曲相關(guān)部門特意進(jìn)行了“喜愛看秦腔”調(diào)查,發(fā)現(xiàn)年齡段與愛看秦腔的人數(shù)比存在較好的線性相關(guān)關(guān)系,年齡在,
,
,
的愛看人數(shù)比分別是0.10,0.18,0.20,0.30.現(xiàn)用各年齡段的中間值代表年齡段,如42代表
.由此求得愛看人數(shù)比
關(guān)于年齡段
的線性回歸方程為
.那么,年齡在
的愛看人數(shù)比為( )
A.0.42B.0.39C.0.37D.0.35
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在橢圓
上,
、
分別為
的左、右頂點,直線
與
的斜率之積為
,
為橢圓的右焦點,直線
.
(1)求橢圓的方程;
(2)直線過點
且與橢圓
交于
、
兩點,直線
、
分別與直線
交于
、
兩點.試問:以
為直徑的圓是否過定點?如果是,求出定點坐標(biāo),否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省新課改后某校為預(yù)測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機(jī)抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計圖.
(1)根據(jù)條形統(tǒng)計圖,估計本屆高三學(xué)生本科上線率.
(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設(shè)以(1)中的本科上線率作為甲市每個考生本科上線的概率.
(i)若從甲市隨機(jī)抽取10名高三學(xué)生,求恰有8名學(xué)生達(dá)到本科線的概率(結(jié)果精確到0.01);
(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設(shè)該市每個考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.
可能用到的參考數(shù)據(jù):取,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在
處切線與坐標(biāo)軸圍成的三角形面積為
,求實數(shù)
的值;
(2)若,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足,且
.
(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列
的通項公式;
(2)求數(shù)列的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
;
若函數(shù)
在
上存在零點,求a的取值范圍;
設(shè)函數(shù)
,
,當(dāng)
時,若對任意的
,總存在
,使得
,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com