分析 1)利用二倍角和誘導公式以及輔助角公式基本公式將函數化為y=Asin(ωx+φ)的形式,將內層函數看作整體,放到正弦函數的增區間上,解不等式得函數的單調遞增區間;
(2)通過圖象平移變換,求解出g(x),x∈[0,π]時,求出內層函數的取值范圍,結合三角函數的圖象和性質,求出g(x)的取值最大和最小值.
解答 解析:函數f(x)=-$\sqrt{3}sinxsin(x+\frac{π}{2})+{cos^2}x-\frac{1}{2}$(x∈R).
化簡可得:$f(x)=-\sqrt{3}sinxcosx+{cos^2}x-\frac{1}{2}=-\frac{{\sqrt{3}}}{2}sin2x+\frac{1}{2}cos2x=cos(2x+\frac{π}{3$)
由$2kπ-π≤2x+\frac{π}{3}≤2kπ$是單調遞增,
解得:$kπ-\frac{2π}{3}≤x≤kπ-\frac{π}{6}\;(k∈Z)$
所以函數f(x)的單調遞增區間為$[{kπ-\frac{2π}{3},kπ-\frac{π}{6}}]\;(k∈Z)$
(2)函數f(x)=cos(2x+$\frac{π}{3}$)的圖象上所有點的橫坐標擴大到原來的2倍,再向右平移$\frac{π}{6}$個單位,得$g(x)=cos(x+\frac{π}{6})$
∵x∈[0,π]
∴$x+\frac{π}{6}∈[{\frac{π}{6},\frac{7π}{6}}]$,
∴$cos(x+\frac{π}{6})∈[{-1,\frac{{\sqrt{3}}}{2}}]$.
故得:當x=0時,g(x)有最大值$\frac{{\sqrt{3}}}{2}$.
當$x=\frac{5π}{6}$時,g(x)有最小值-1.
點評 本題主要考查對三角函數的化簡能力和三角函數的圖象和性質的運用,利用三角函數公式將函數進行化簡是解決本題的關鍵.考查函數y=Asin(ωx+∅)的圖象變換規律,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{12}$ | $\frac{π}{3}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ | |
f(x)=Asin(ωx+φ) | 0 | 5 | 0 | -5 | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1 | B. | $\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{36}$=1 | C. | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1 | D. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{36}$=1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com