分析 (1)要使得f(x)=x(x-alnx+a)有兩個零點,即g(x)=x-alnx+a有兩個零點,即求g(x)的最小值要小于0即可.
(2)要求證x1x2>e4 即求證lnx1x2>4;令$\frac{{x}_{1}}{{x}_{2}}=t(t>1)$,lnx1x2=$\frac{\frac{{x}_{1}}{{x}_{2}}+1}{\frac{{x}_{1}}{{x}_{2}}-1}$$•ln\frac{{x}_{1}}{{x}_{2}}$+2=$\frac{t+1}{t-1}•lnt+2$;所以,原不等式即證:$\frac{t+1}{t-1}•lnt+2>4$
解答 解:(1)f(x)=x(x-alnx+a),函數的定義域為(0,+∞)
設g(x)=x-alnx+a,所以g(x)有兩個零點,g'(x)=$\frac{x-a}{x}$,
a≤0時,g(x)單調遞增,顯然不成立;
a>0時,令g'(x)=0,則導函數零點為x=a;所以f(x)在(0,a)上單調遞減,(a,+∞)上單調遞增,
故g(x)最小值為g(a)=a-alna+a,要使得g(x)有兩個零點,
則g(a)<0,解得:e2<a
所以a的取值范圍為:(e2,+∞)
證明:(2)因為${x}_{1}-aln{x}_{1}+a=0\$ ①; x2-alnx2+a=0 ②;
①+②:$ln{x}_{1}{x}_{2}=\frac{{x}_{1}+{x}_{2}+2a}{a}$;
①-②:${x}_{1}-{x}_{2}=aln\frac{{x}_{1}}{{x}_{2}}$;
令$\frac{{x}_{1}}{{x}_{2}}=t(t>1)$,lnx1x2=$\frac{\frac{{x}_{1}}{{x}_{2}}+1}{\frac{{x}_{1}}{{x}_{2}}-1}$$•ln\frac{{x}_{1}}{{x}_{2}}$+2=$\frac{t+1}{t-1}•lnt+2$
所以,原不等式即證:$\frac{t+1}{t-1}•lnt+2>4$
即證:$lnt>2•\frac{t-1}{t+1}$
設h(t)=lnt-2$•\frac{t-1}{t+1}$,有h'(t)=$\frac{1}{t}-\frac{4}{(t+1)^{2}}=\frac{(t-1)^{2}}{t(t+1)^{2}}>0$
所以h(t)單調遞增,所以h(t)>h(1)=0,所以不等式得證.
點評 本題主要考查了函數零點、利用導數求函數的最小值以及轉化思想在證明中的應用,屬中等題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若“p且q”為假,則p,q至少有一個是假命題 | |
B. | 命題“?x∈R,x2-x-1<0”的否定是““?x∈R,x2-x-1≥0” | |
C. | 設A,B是兩個集合,則“A⊆B”是“A∩B=A”的充分不必要條件 | |
D. | 當a<0時,冪函數y=xa在(0,+∞)上單調遞減 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ln(a-b)>0 | B. | $\frac{1}{a}<\frac{1}{b}$ | C. | 3a-b<1 | D. | loga2<logb2 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | $\frac{2\sqrt{13}}{13}$ | C. | $\frac{5\sqrt{13}}{26}$ | D. | $\frac{7\sqrt{13}}{26}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com