【題目】已知橢圓的兩個焦點為
,離心率為
.
(1)求橢圓的方程;
(2)設點是橢圓
的右頂點,過點
的直線與橢圓
交于
,
兩點,直線
,
與直線
分別交于
,
兩點.求證:點
在以
為直徑的圓上.
【答案】(1);(2)見解析
【解析】試題分析:(1)由題意,設橢圓方程為 ,
則,解出
,即可得到橢圓
的方程;
( 2)由(1)可得. 考慮直線
不存在斜率時,可得
.
在以
為直徑的圓上. 當直線
存在斜率時,設
方程為
,
、
.
由可得
. 直線
方程為
,得
, 同理,
. 求出
,可證
.即
在以
為直徑的圓上.
試題解析:
(1)由題意,設橢圓方程為 ,
則
得
所以橢圓方程為
(2)證明:由(Ⅰ)可得.
當直線不存在斜率時,可得
直線方程為
,令
得
,
同理,得.
所以,
得.
所以,
在以
為直徑的圓上.
當直線存在斜率時,設
方程為
,
、
.
由可得
.
顯然,
,
直線方程為
,得
,
同理, .
所以.
因為
所以
所以
所以,
在以
為直徑的圓上.
綜上, 在以
為直徑的圓上.
科目:高中數學 來源: 題型:
【題目】若數列{}的前n項和Sn=2
-2.
(1)求數列{}的通項公式;
(2)若bn=log
,Sn=b1+b2+…+bn,對任意正整數n,Sn+(n+m)
<0恒成立,試求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線的焦點為
,過點
的直線與拋物線相交于
兩點,與拋物線的準線相交于點
,
,則
與
的面積之比
__________.
【答案】
【解析】
由題意可得拋物線的焦點的坐標為
,準線方程為
。
如圖,設,過A,B分別向拋物線的準線作垂線,垂足分別為E,N,則
,解得
。
把代入拋物線
,解得
。
∴直線AB經過點與點
,
故直線AB的方程為,代入拋物線方程解得
。
∴。
在中,
,
∴
∴。答案:
點睛:
在解決與拋物線有關的問題時,要注意拋物線的定義在解題中的應用。拋物線定義有兩種用途:一是當已知曲線是拋物線時,拋物線上的點M滿足定義,它到準線的距離為d,則|MF|=d,可解決有關距離、最值、弦長等問題;二是利用動點滿足的幾何條件符合拋物線的定義,從而得到動點的軌跡是拋物線.
【題型】填空題
【結束】
17
【題目】已知三個內角
所對的邊分別是
,若
.
(1)求角;
(2)若的外接圓半徑為2,求
周長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓:
的左、右焦點分別為
、
,若橢圓過點
.
(1)求橢圓的方程;
(2)若為橢圓的左、右頂點,
(
)為橢圓上一動點,設直線
分別交直線
:
于點
,判斷線段
為直徑的圓是否經過定點,若是,求出該定點坐標;若不恒過定點,說明理由.
【答案】(1) ;(2)答案見解析.
【解析】試題分析:(1)將點坐標代人橢圓方程 并與離心率聯立方程組,解得,
(2)根據點斜式得直線
方程,與直線
聯立解得點
坐標,根據向量關系得
為直徑的圓方程,最后代人橢圓方程進行化簡,并根據恒等式成立條件求定點坐標.
試題解析:(1)由已知,
∴①
∵橢圓過點,
∴②
聯立①②得,
∴橢圓方程為
(2)設,已知
∵,∴
∴都有斜率
∴
∴③
∵
∴④
將④代入③得
設方程
∴方程
∴
由對稱性可知,若存在定點,則該定點必在軸上,設該定點為
則
∴
∴,∴
∴存在定點或
以線段
為直徑的圓恒過該定點.
點睛:定點的探索與證明問題
(1)探索直線過定點時,可設出直線方程為,然后利用條件建立
等量關系進行消元,借助于直線系的思想找出定點.
(2)從特殊情況入手,先探求定點,再證明與變量無關.
【題型】解答題
【結束】
21
【題目】已知函數,曲線
在
處的切線經過點
.
(1)證明: ;
(2)若當時,
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為積極響應國家“陽光體育運動”的號召,某學校在了解到學生的實際運動情況后,發起以“走出教室,走到操場,走到陽光”為口號的課外活動倡議。為調查該校學生每周平均體育運動時間的情況,從高一高二基礎年級與高三三個年級學生中按照4:3:3的比例分層抽樣,收集300位學生每周平均體育運動時間的樣本數據(單位:小時),得到如圖所示的頻率分布直方圖。
(1)據圖估計該校學生每周平均體育運動時間.并估計高一年級每周平均體育運動時間不足4小時的人數;
(2)規定每周平均體育運動時間不少于6小時記為“優秀”,否則為“非優秀”,在樣本數據中,有30位高三學生的每周平均體育運動時間不少于6小時,請完成下列列聯表,并判斷是否有99%的把握認為“該校學生的每周平均體育運動時間是否“優秀”與年級有關”.
基礎年級 | 高三 | 合計 | |
優秀 | |||
非優秀 | |||
合計 | 300 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:K2,n=a+b+c+d.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,已知AA1⊥底面ABC,AC⊥BC,四邊形BB1C1C為正方形,設AB1的中點為D,B1C∩BC1=E.
求證:(1)DE∥平面AA1C1C;
(2)BC1⊥平面AB1C.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩班舉行電腦漢字錄入比賽,參賽學生每分鐘錄入漢字的個數經統計計算后填入下表,某同學根據表中數據分析得出的結論正確的是( )
班級 | 參加人數 | 中位數 | 方差 | 平均數 |
甲 | 55 | 149 | 191 | 135 |
乙 | 55 | 151 | 110 | 135 |
A.甲、乙兩班學生成績的平均數相同
B.甲班的成績波動比乙班的成績波動大
C.乙班優秀的人數多于甲班優秀的人數(每分鐘輸入漢字數≥150個為優秀)
D.甲班成績的眾數小于乙班成績的眾數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4—4:極坐標與參數方程
在平面直角坐標系中,將曲線
(
為參數) 上任意一點
經過伸縮變換
后得到曲線
的圖形.以坐標原點
為極點,x軸的非負半軸為極軸,取相同的單位長度建立極坐標系,已知直線
.
(Ⅰ)求曲線和直線
的普通方程;
(Ⅱ)點P為曲線上的任意一點,求點P到直線
的距離的最大值及取得最大值時點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com