A. | {x|x$<-\frac{1}{2}$或x$>\frac{1}{3}$} | B. | {x|x$\frac{1}{3}$或x>$\frac{1}{2}$} | C. | {x|-$\frac{1}{2}$<x<$\frac{1}{3}$} | D. | {x|-$\frac{1}{3}$<x<$\frac{1}{2}$} |
分析 關于x的不等式ax2+bx+c>0的解集為{x|-2<x<3},可知a<0,且-2,3是方程ax2+bx+c=0的兩個實數根,利用根與系數的關系可得a、b、c的關系;再代入不等式cx2-bx+a<0化為-6x2+x+1>0,求解即可.
解答 解:關于x的一元二次不等式ax2+bx+c>0的解集為{x|-2<x<3},
∴a<0,且-2,3是一元二次方程ax2+bx+c=0的兩個實數根,
∴$\frac{b}{a}$=-(-2+3)=-1,$\frac{c}{a}$=-6,a<0;
∴不等式cx2-bx+a<0化為-6x2+x+1>0,
化為6x2-x-1<0,
解得-$\frac{1}{3}$<x<$\frac{1}{2}$.
因此不等式的解集為{x|-$\frac{1}{3}$<x<$\frac{1}{2}$}.
故選:D.
點評 本題考查了一元二次不等式的解法以及一元二次方程的根與系數的關系,是基礎題目.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|-3≤x≤1} | B. | {x|x≥3或x≤-1} | C. | {x|-1≤x≤3} | D. | {x|x≤-3或x≥1} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 240 | B. | 120 | C. | $\frac{2π}{3}$ | D. | $\frac{4π}{3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com