【題目】已知函數
(Ⅰ)求的最小正周期和單調遞增區間;
(Ⅱ)說明函數的圖像可由正弦曲線
經過怎樣的變化得到;
(Ⅲ)若是第二象限的角,求
【答案】(Ⅰ);(Ⅱ)如解析所示;(Ⅲ)
【解析】試題分析:(Ⅰ)直接根據周期公式即可求出最小正周期,通過正弦型復合函數的單調性求解增區間;(Ⅱ)可先平移后伸縮變換,也可先伸縮后平移變換得到;(Ⅲ)把代到(1)中的函數解析式,結合
的范圍求解
的正余弦值,由二倍角可得答案.
試題解析:(Ⅰ)由可知,函數的最小正周期為
令,則
的增區間是
,
由,解得
所以函數的單調遞增區間是
(Ⅱ)將和圖像縱坐標不變, 橫坐標為原來的
倍得到
的圖像,將
和圖像向左平移
得到
的圖像,將
的圖像橫坐標不變,縱坐標為原來的
倍得到
的圖像
或,將和圖像向左平移
,得到
的圖像,將
縱坐標
不變,橫坐標為原來的得到
的圖像,將
圖像橫坐標不變,縱坐標為原來的
倍得到
的圖像.
(Ⅲ)由知,所以
,即
,
又是第二象限的角,所以
,
所以
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)若函數有且只有一個極值點,求實數
的取值范圍;
(2)對于函數,
,
,若對于區間
上的任意一個
,都有
,則稱函數
是函數
,
在區間
上的一個“分界函數”.已知
,
,問是否存在實數
,使得函數
是函數
,
在區間
上的一個“分界函數”?若存在,求實數
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的方程為
,其中
.
(1)求證:直線恒過定點;
(2)當變化時,求點
到直線
的距離的最大值;
(3)若直線分別與
軸、
軸的負半軸交于
兩點,求
面積的最小值及此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場進行有獎促銷活動,顧客購物每滿500元,可選擇返回50元現金或參加一次抽獎,抽獎規則如下:從1個裝有6個白球、4個紅球的箱子中任摸一球,摸到紅球就可獲得100元現金獎勵,假設顧客抽獎的結果相互獨立.
(Ⅰ)若顧客選擇參加一次抽獎,求他獲得100元現金獎勵的概率;
(Ⅱ)某顧客已購物1500元,作為商場經理,是希望顧客直接選擇返回150元現金,還是選擇參加3次抽獎?說明理由;
(Ⅲ)若顧客參加10次抽獎,則最有可能獲得多少現金獎勵?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校對高二年段的男生進行體檢,現將高二男生的體重數據進行整理后分成6組,并繪制部分頻率分布直方圖(如圖所示).已知第三組
的人數為200.根據一般標準,高二男生體重超過
屬于偏胖,低于
屬于偏瘦.觀察圖形的信息,回答下列問題:
(1)求體重在內的頻率,并補全頻率分布直方圖;
(2)用分層抽樣的方法從偏胖的學生中抽取人對日常生活習慣及體育鍛煉進行調查,則各組應分別抽取多少人?
(3)根據頻率分布直方圖,估計高二男生的體重的中位數與平均數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是兩條不同的直線,
是三個不同的平面,給出下列四個命題:
①若,則
②若
,則
③若,則
④若
,則
其中正確命題的序號是( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,已知曲線
,以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線
.
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的
倍后得到曲線
.試寫出直線
的直角坐標方程和曲線
的參數方程:
(2)在曲線上求一點
,使點
到直線
的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x﹣﹣(a+2)lnx,其中實數a≥0.
(1)若a=0,求函數f(x)在x∈[1,3]上的最值;
(2)若a>0,討論函數f(x)的單調性.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com