A. | 數(shù)列{An}是等差數(shù)列,數(shù)列{Bn}是等比數(shù)列 | |
B. | 數(shù)列{An}與{Bn}都是等差數(shù)列 | |
C. | 數(shù)列{An}是等比數(shù)列,數(shù)列{Bn}是等差數(shù)列 | |
D. | 數(shù)列{An}與{Bn}都是等比數(shù)列 |
分析 求得函數(shù)的導(dǎo)數(shù),可得切線的斜率和切點(diǎn),運(yùn)用點(diǎn)斜式方程可得切線ln的方程,ln+1的方程,解方程可得An,Bn,再由等差數(shù)列和等比數(shù)列的通項(xiàng)公式,即可判斷.
解答 解:函數(shù)y=ex的導(dǎo)數(shù)為y′=ex,
可得切線ln的方程為y-en=en(x-n),①
ln+1的方程為y-en+1=en+1(x-n-1),②
由①②解得An=n+$\frac{1}{e-1}$;
Bn=$\frac{{e}^{n+1}}{e-1}$,
即有數(shù)列{An}是首項(xiàng)為$\frac{e}{e-1}$,公差為1的等差數(shù)列,
數(shù)列{Bn}是首項(xiàng)為$\frac{{e}^{2}}{e-1}$,公比為e的等比數(shù)列.
故選:A.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查等差數(shù)列和等比數(shù)列的判斷,正確求導(dǎo)和運(yùn)用點(diǎn)斜式方程是解題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com