A. | [0,$\frac{π}{4}$) | B. | $[\frac{π}{4},\frac{π}{2})$ | C. | $[\frac{3π}{4},π)$ | D. | $(\frac{π}{2},\frac{3π}{4}]$ |
分析 由導函數的幾何意義可知函數圖象在切點處的切線的斜率值即為其點的導函數值,結合函數的值域的求法利用基本不等式求出k的范圍,再根據k=tanθ,結合正切函數的圖象求出角θ的范圍.
解答 解:根據題意得f′(x)=-$\frac{{4e}^{x}}{{e}^{2x}+{2e}^{x}+1}$,
∵k=-$\frac{{4e}^{x}}{{e}^{2x}+{2e}^{x}+1}$≤-$\frac{4}{2+2}$=-1,且k<0,
則曲線y=f(x)上切點處的切線的斜率k≥-1,
又∵k=tanθ,結合正切函數的圖象:
由圖可得θ∈[$\frac{3π}{4}$,π),
故選:C.
點評 本題考查了導數的幾何意義,以及利用正切函數的圖象求傾斜角等基礎知識,考查運算求解能力,考查數形結合思想、化歸與轉化思想.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 向左平移$\frac{5π}{12}$個單位 | B. | 向右平移$\frac{5π}{12}$個單位 | ||
C. | 向左平移$\frac{7π}{12}$個單位 | D. | 向右平移$\frac{7π}{12}$個單位 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com