【題目】已知橢圓的上、下頂點分別為
和
,且其離心率為
.
(1)求橢圓的標準方程;
(2)點是直線
上的一個動點,直線
分別交橢圓
于
兩點(
四點互不重合),請判斷直線
是否恒過定點.若過定點,求出定點的坐標;否則,請說明理由.
科目:高中數學 來源: 題型:
【題目】設動圓經過點
,且與圓
為圓心)相內切.
(Ⅰ)求動圓圓心的軌跡
的方程;
(Ⅱ)設經過的直線與軌跡
交于
、
兩點,且滿足
的點
也在軌跡
上,求四邊形
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知圓C過點P(1,1),且與圓M:關于直線
對稱.
(1)求圓C的方程:
(2)設Q為圓C上的一個動點,求最小值;
(3)過點P作兩條相異直線分別與圓C交與A,B,且直線PA和直線PB的傾斜角互補,O為坐標原點,試判斷直線OP與直線AB是否平行?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過橢圓的四個頂點與坐標軸垂直的四條直線圍成的矩形
(
是第一象限內的點)的面積為
,且過橢圓
的右焦點
的傾斜角為
的直線過點
.
(1)求橢圓的標準方程
(2)若射線與橢圓
的交點分別為
.當它們的斜率之積為
時,試問
的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數與
的圖象關于點
對稱.
(1)求函數的解析式;
(2)若函數有兩個不同零點,求實數
的取值范圍;
(3)若函數在
上是單調減函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,
底面
,
分別是
的中點,
,
,
.
(I)證明:;
(II)求直線與平面
所成角的正弦值;
(III)在邊上是否存在點
,使
與
所成角的余弦值為
,若存在,確定點
位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨機抽取某廠的某種產品400件,經質檢,其中有一等品252件、二等品100件、三等品40件、次品8件.已知生產1件一、二、三等品獲得的利潤分別為6萬元、2萬元、1萬元,而1件次品虧損2萬元.設1件產品的利潤(單位:萬元)為.
(1)求的分布列和1件產品的平均利潤(即
的期望);
(2)經技術革新后,仍有四個等級的產品,但次品率降為1%,一等品率提高為70%.如果此時要求1件產品的平均利潤不小于4.75萬元,則三等品率最多是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com