分析 (Ⅰ)求出函數的導數,根據函數的單調性求出f(x)>2x即可;
(Ⅱ)求出函數f(x)的導數,求出曲線方程,得到xn+1=$\frac{1}{2}$ln$\frac{1{+x}_{n}}{1{-x}_{n}}$(${{x}_{n}}^{2}$-1)+xn,從而證出結論即可;
(Ⅲ)得到bk=${log}_{{x}_{n+k}}$<${log}_{{{x}_{n+k-1}}^{3}}$a=$\frac{1}{3}$bk-1<${(\frac{1}{3})}^{2}$bk-2<…<${(\frac{1}{3})}^{k}$b0,問題轉化為$\frac{3}{2}$b0<$\frac{1}{2}$${(\frac{1}{3})}^{n-2}$,根據(Ⅱ)證出即可.
解答 證明:(Ⅰ)設g(x)=ln(1+x)-ln(1-x)-2x,
則g′(x)=$\frac{{2x}^{2}}{1{-x}^{2}}$,
故x∈(0,1)時,g′(x)>0,函數g(x)在(0,1)遞增,
∴g(x)>g(0)=0,即f(x)>2x;
(Ⅱ)由f′(x)=$\frac{1}{1+x}$+$\frac{1}{1-x}$=$\frac{2}{1{-x}^{2}}$,
故曲線在點(xn,f(xn))處的切線方程是:y=$\frac{2}{1{{-x}_{n}}^{2}}$(x-xn)+f(xn),
令y=0,則xn+1=xn+$\frac{1}{2}$f(xn)(${{x}_{n}}^{2}$-1),
則xn+1=$\frac{1}{2}$ln$\frac{1{+x}_{n}}{1{-x}_{n}}$(${{x}_{n}}^{2}$-1)+xn,
由(Ⅰ)及${{x}_{n}}^{2}$-1<0得:xn+1<$\frac{1}{2}$(2xn)•(${{x}_{n}}^{2}$-1)+xn=xn3;
(Ⅲ)令${log}_{{x}_{n+k}}$=bk,(k=0,1,2,…,m),
∵xn+k<${{x}_{n+k-1}}^{3}$,且a∈(0,1),xn∈(0,1),
∴logaxn+k>loga${{x}_{n+k-1}}^{3}$,
從而bk=${log}_{{x}_{n+k}}$<${log}_{{{x}_{n+k-1}}^{3}}$a=$\frac{1}{3}$bk-1<${(\frac{1}{3})}^{2}$bk-2<…<${(\frac{1}{3})}^{k}$b0,
∴log${\;}_{{x}_{n}}$a+log${\;}_{{x}_{n+1}}$a+…+log${\;}_{{x}_{n+m}}$a
=b0+b1+…+bm<b0(1+$\frac{1}{3}$+${(\frac{1}{3})}^{2}$+${(\frac{1}{3})}^{m}$)=$\frac{3}{2}$b0(1-${(\frac{1}{3})}^{m+1}$)<$\frac{3}{2}$b0,
要證log${\;}_{{x}_{n}}$a+log${\;}_{{x}_{n+1}}$a+…+log${\;}_{{x}_{n+m}}$a<$\frac{1}{2}$•($\frac{1}{3}$)n-2(n∈N*),
只需$\frac{3}{2}$b0<$\frac{1}{2}$${(\frac{1}{3})}^{n-2}$,
即證b0<${(\frac{1}{3})}^{n-1}$?${log}_{{x}_{n}}$a<${(\frac{1}{3})}^{n-1}$?xn<${a}^{{3}^{n-1}}$,
由(Ⅱ)以及x1∈(0,a)得:xn<${{x}_{n-1}}^{3}$<${x}_{n-2}^{{3}^{2}}$<…<${x}_{1}^{{3}^{n-1}}$<${a}^{{3}^{n-1}}$,
故原結論成立.
點評 本題考查了函數的單調性、最值問題,考查導數的應用,曲線方程問題,考查不等式的證明,是一道綜合題.
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (x+$\frac{1}{x}$)cosx | B. | (x+$\frac{1}{x}$)sinx | C. | xcosx | D. | $\frac{cosx}{x}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{{2^{2016}}+1}}{3}$ | B. | $\frac{{{2^{2016}}-1}}{3}$ | C. | $\frac{{{2^{2017}}+1}}{3}$ | D. | $\frac{{{2^{2017}}-1}}{3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com