日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
16.設函數f(x)=|x-1|+|2x-1|.
(Ⅰ)求不等式f(x)≥2的解集;
(Ⅱ)若?x∈R,不等式f(x)≥a|x|恒成立,求實數a的取值范圍.

分析 (Ⅰ)分類討論,利用絕對值的幾何意義求不等式f(x)≥2的解集;
(Ⅱ)若?x∈R,不等式f(x)≥a|x|恒成立,分類討論,分離參數,即可求實數a的取值范圍.

解答 解:(1)不等式f(x)≥2可化為|x-1|+|2x-1|≥2,
x<$\frac{1}{2}$,不等式化為1-x+1-2x≥2,∴x≤0,∴x≤0;
$\frac{1}{2}≤x≤1$,不等式化為1-x+2x-1≥2,∴x≥2,不成立;
x>1,不等式化為x-1+2x-1≥2,∴x≥$\frac{4}{3}$,∴x≥$\frac{4}{3}$;
綜上所述,不等式f(x)≥2的解集為{x|x≤0或$x≥\left.{\frac{4}{3}}\right\}$.-------------(6分)
(2)當x=0時,f(x)=2,a|x|=0,原式恒成立;
當x≠0時,原式等價轉換為$|{1-\frac{1}{x}}|+|{2-\frac{1}{x}}|≥a$恒成立,即$a≤|{1-\frac{1}{x}}|+{|{2-\frac{1}{x}}|_{min}}$.
∵$|{1-\frac{1}{x}}|+|{2-\frac{1}{x}}|≥|{({1-\frac{1}{x}})-({2-\frac{1}{x}})}|=1$,當且僅當$({1-\frac{1}{x}})({2-\frac{1}{x}})≤0$即$\frac{1}{2}≤x≤1$時取等,
∴a≤1.-------------(12分)

點評 本題考查絕對值不等式的解法,考查分類討論的數學思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

8.已知函數f(x)=$\frac{1+lnx}{x}$
(1)若函數在區間(a,a+$\frac{1}{2}$)(其中a>0)上存在極值,求實數a的取值范圍;
(2)當x≥1時,求證:不等式f(x)>$\frac{2cos2x}{x+1}$恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示,則該幾何體的表面積與體積比為(  )
A.$3\sqrt{2}$B.$2\sqrt{2}$C.2$\sqrt{2}$+1D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.2016年1月1日起全國統一實施全面兩孩政策.為了解適齡民眾對放開生育二胎政策的態度,某市選取70后80后作為調查對象,隨機調查了100位,得到數據如表:
生二胎不生二胎合計
70后301545
80后451055
合計7525100
(1)根據調查數據,判斷是否有90%以上把握認為“生二胎與年齡有關”,并說明理由:
參考數據:
P(K2>k)0.150.100.050.0250.0100.005
k2.7022.7063.8415.0246.6357.879
(參考公式:K2=$\frac{{n{{({ac-bd})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)
(2)以這100人的樣本數據估計該市的總體數據,且以頻率估計概率,若從該市70后公民中(人數很多)隨機抽取3位,記其中生二胎的人數為X,求隨機變量X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.某學校課題組為了研究學生的數學成績和物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績(百分制)如表所示:
 序號 1 2 3 4 5 6 7 8 9 10 1112 13  14 1516  17 1819 20 
 數學成績 9575  80 94 92 65 67 84 98 7167 93  64 78 77 90 57 83 7283 
 物理成績 90 63 7287  91 71 58 82 93 81 77 82 48 85 69 91 6184  7886 
若數學成績90分(含90分)以上為優秀,物理成績85(含85分)以上為優秀.有多少把握認為學生的學生成績與物理成績有關系(  )
參考數據公式:①獨立性檢驗臨界值表
 P(K2≥k0 0.50 0.40 0.25 015. 0.10 0.05 0.0250.010 0.005  0001
 k0 0.4550.708  1.323 2.072 2.706 3.841 5.024 6356. 7.879 10.828
②獨立性檢驗隨機變量K2的值的計算公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
A.99.9%B.99.5%C.97.5%D.95%

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知拋物線C:x2=2py(p>0),過其焦點作斜率為1的直線l交拋物線C于M、N兩點,且|MN|=16.
(Ⅰ)求拋物線C的方程;
(Ⅱ)已知動圓P的圓心在拋物線C上,且過定點D(0,4),若動圓P與x軸交于A、B兩點,求$\frac{|DA|}{|DB|}$+$\frac{|DB|}{|DA|}$的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知拋物線E:y2=2px(p>0)的準線與x軸交于M,過點M作⊙C:(x-2)2+y2=1的兩條切線,切點為A,B,|AB|=$\frac{{4\sqrt{2}}}{3}$.
(1)求拋物線E的方程;
(2)過拋物線E上一點N作⊙C的兩條切線,切點分別為P,Q,若$\overrightarrow{OP}$=λ$\overrightarrow{OQ}$,求點N的坐標及|PQ|長度.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.已知A,B是圓O:x2+y2=4上的兩個動點,P是線段A,B上的動點,當△AOB的面積最大時,$\overrightarrow{AO}•\overrightarrow{AP}-{\overrightarrow{AP}^2}$的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.過原點且傾斜角為60°的直線被圓x2+y2-4x=0所截得的弦長為(  )
A.$\sqrt{3}$B.2C.$\sqrt{6}$D.$2\sqrt{3}$

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品久久久久蜜臀 | 精品国产乱码久久久久久闺蜜 | 欧美色综合天天久久综合精品 | 国产精品1区2区 | 天天操天天舔天天爽 | 99re6在线视频精品免费 | 亚洲香蕉视频 | 成人日韩 | 久久精品一区二区三区四区毛片 | 日本精品免费 | 国产一区二区精品在线观看 | 国产一区91 | 日韩精品网站在线观看 | 亚洲一区二区三区在线 | 成人国产精品免费观看 | 射久久| 欧美日韩二区三区 | 禁果av一区二区三区 | 精品欧美一区二区三区久久久 | 欧美色图第一页 | 欧美日韩精品一区二区在线观看 | 日本不卡高字幕在线2019 | 久久久噜噜噜久久久 | 中文字幕亚洲精品 | 亚洲欧美视频 | av国产精品毛片一区二区小说 | 亚洲va中文字幕 | 一区二区中文字幕 | 欧美成人精品 | 国产免费av网站 | 视频成人免费 | 国产精品一区二区在线观看免费 | 看亚洲一级毛片 | 青青久久av北条麻妃海外网 | 精品视频久久 | 一区二区免费 | 在线免费毛片 | 国产成人精品在线 | 亚洲午夜精品a | av网站在线免费观看 | 免费日本视频 |