【題目】在直角坐標系中,以坐標原點
務極點,
軸正半軸為極軸建立極坐標系,曲線
,
(1)求曲線,
的直角坐標方程;
(2)曲線和
的交點為
,
,求以
為直徑的圓與
軸的交點坐標.
【答案】(1) :
;
:
(2)
點坐標為
或
【解析】
(Ⅰ)根據極坐標與直角坐標的互化公式,即可求解曲線的直角坐標方程;
(Ⅱ)先求出MN的中點坐標,|MN|的長,可求得圓的方程,再令x=0,即可求解.
(Ⅰ)由sin(θ+)=
,得ρ(sinθcos
+cosθsin
)=
,
將代入上得x+y=1,即C1的直角坐標方程為x+y+1=0,
同理由ρ2=,可得3x2-y2=1,∴C2的直角坐標方程為3x2-y2=1.
(Ⅱ)∵PM⊥PN,先求以MN為直徑的圓,設Mx1,y1),N(x2,y2),
由得3x2-(1-x)2=1,即x2+x-1=0,
∴,則MN的中點坐標為(-
,
),
由弦長公式,可得|MN|=|x1-x2|=
=
.
∴以MN為直徑的圓:(x+)2+(y-
)2=(
)2,
令x=0,得+(y-
)2=
,即(y-
)2=
,∴y=0或y=3,
∴所求P點的坐標為(0,0)或(0,3).
科目:高中數學 來源: 題型:
【題目】一元線性同余方程組問題最早可見于中國南北朝時期(公元世紀)的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”問題,原文如下:有物不知數,三三數之剩二,五五數之剩三,問物幾何?即,一個整數除以三余二,除以五余三,求這個整數.設這個整數為
,當
時, 符合條件的
共有_____個.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過點的橢圓
的離心率為
,橢圓與
軸交于兩點
、
,過點
的直線
與橢圓交于另一點
,并與
軸交于點
,直線
與直線
交于點
.
(1)求該橢圓的標準方程;
(2)當點異于點
時,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知曲線C1:(t為參數),C2:
(m為參數).
(1)將C1,C2的方程化為普通方程,并說明它們分別表示什么曲線;
(2)設曲線C1與C2的交點分別為A,B,O為坐標原點,求△OAB的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在下列三個正方體中,
均為所在棱的中點,過
作正方體的截面.在各正方體中,直線
與平面
的位置關系描述正確的是
A. 平面
的有且只有①;
平面
的有且只有②③
B. 平面
的有且只有②;
平面
的有且只有①
C. .平面
的有且只有①;
平面
的有且只有②
D. 平面
的有且只有②;
平面
的有且只有③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,E是PC的中點,底面ABCD為矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE與棱PD交于點F.
(1)求證:EF∥平面PAB;
(2)若PB與平面ABCD所成角的正弦值為,求二面角P-AE-B的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com