分析 (1)求出函數的導數,得到函數的單調區間,求出函數的最小值即可;
(2)求出函數的導數,通過討論a的范圍,求出函數的單調區間即可.
解答 解:(1)f′(x)=lnx+2,(x>0),
令f′(x)=0,得:x=$\frac{1}{{e}^{2}}$,
∴x∈(0,$\frac{1}{{e}^{2}}$)時,f′(x)<0,
x∈($\frac{1}{{e}^{2}}$,+∞)時,f′(x)>0,
∴∴$當x=\frac{1}{e2}時,f(x)min=\frac{1}{e2}(1n\frac{1}{e2}+1)=-\frac{1}{e2}$…(6分)
(2)$F(x)=ax2+1nx+2(x>0),f′(x)=2ax+\frac{1}{x}=\frac{2ax2+1}{x}(x>0)$…(7分)
①2a≥0時,恒有f′(x)>0,F(x)在(0,+∞)上是增函數;…(9分)
②當a<0時,令f′(x)>0,解得:0<x<$\sqrt{-\frac{1}{2a}}$,
令f′(x)<0,解得:x>$\sqrt{-\frac{1}{2a}}$…(11分)
綜上,當a≥0時,F(x)在(0,+∞)上是增函數;
當a?0時,F(x)在$(0,\sqrt{-\frac{1}{2a}})$上單調遞增,在$(\sqrt{-\frac{1}{2a}},+∞)$上單調遞減…(12分)
點評 本題考查了函數的單調性、最值問題,考查導數的應用以及分類討論思想,是一道中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
等級 | 優秀 | 合格 | 不合格 |
男生(人) | 15 | x | 5 |
女生(人) | 15 | 3 | y |
男生 | 女生 | 總計 | |
優秀 | 15 | 15 | 30 |
非優秀 | 10 | 5 | 15 |
總計 | 25 | 20 | 45 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ($\frac{1}{2}$,1) | B. | [$\frac{1}{2}$,1) | C. | [-$\frac{1}{2}$,1] | D. | (-$\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com