日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
11.已知函數f(x)=$\frac{mx}{lnx}$,曲線y=f(x)在點(e2,f(e2))處的切線與直線2x+y=0垂直(其中e為自然對數的底數).
(1)求f(x)的解析式及單調遞減區間;
(2)若存在x0∈[e,+∞),使函數g(x)=aelnx+$\frac{1}{2}{x^2}-\frac{a+e}{2}$•lnx•f(x)≤a成立,求實數a的取值范圍.

分析 (1)由題意有:$f′({e}^{2})=\frac{m}{4}$=$\frac{1}{2}$,可得f(x)的解析式;由f′(x)<0得0<x<1或1<x<e,即可求出單調遞減區間;
(2)由已知,若存在x0∈[e,+∞),使函數g(x)=aelnx+$\frac{1}{2}{x^2}-\frac{a+e}{2}$•lnx•f(x)≤a成立,則只需滿足當x∈[e,+∞),g(x)min≤a即可

解答 解:(1)函數f(x)的定義域為(0,1)∪(1,+∞),f′(x)=$\frac{m(lnx-1)}{(lnx)^{2}}$,
又由題意有:$f′({e}^{2})=\frac{m}{4}$=$\frac{1}{2}$,所以m=2,f(x)=$\frac{2x}{lnx}$.
此時,f′(x)=$\frac{2(lnx-1)}{(lnx)^{2}}$,由f′(x)<0得0<x<1或1<x<e,
所以函數f(x)的單調遞減區間為(0,1)和(1,e).…(5分)
(2)因為g(x)=aelnx+$\frac{1}{2}{x}^{2}$-(a+e)x,
由已知,若存在x0∈[e,+∞),使函數g(x)=aelnx+$\frac{1}{2}{x^2}-\frac{a+e}{2}$•lnx•f(x)≤a成立,
則只需滿足當x∈[e,+∞),g(x)min≤a即可.…(6分)
又g(x)=aelnx+$\frac{1}{2}{x}^{2}$-(a+e)x,
則g′(x)=$\frac{(x-a)(x-e)}{x}$,…(7分)
a≤e,則g′(x)≥0在x∈[e,+∞)上恒成立,
∴g(x)在[e,+∞)上單調遞增,
∴g(x)min=g(e)=-$\frac{{e}^{2}}{2}$,
∴a≥-$\frac{{e}^{2}}{2}$,
∵a≤e,
∴-$\frac{{e}^{2}}{2}$≤a≤e.…(9分)
a>e,則g(x)在[e,a)上單調遞減,在[a,+∞)上單調遞增,
∴g(x)在[e,+∞)上的最小值是g(a),
∵g(a)<g(e),a>e,∴滿足題意,
綜上所述,a≥-$\frac{{e}^{2}}{2}$.…(12分)

點評 本題主要考查函數、導數等基本知識.考查運算求解能力及化歸思想、函數方程思想、分類討論思想的合理運用,注意導數性質的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

1.已知拋物線C1,:y2=2px上一點M(3,y0)到其焦點F的距離為4,橢圓C2:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,且過拋物線的焦點F.
(1)求拋物線C1和橢圓C2的標準方程;
(2)過點F的直線l1交拋物線C1交于A,B兩不同點,交y軸于點N,已知$\overrightarrow{NA}$=$λ\overrightarrow{AF}$,$\overrightarrow{NB}$=μ$\overrightarrow{BF}$,求證:λ+μ為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.設f(x)是定義在正整數集上的函數,且滿足:對于定義域內任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立.則下列命題正確的是(  )
A.若f(3)≥9成立,則對于任意k∈N*,均有f(k)≥k2成立
B.若f(3)≥9成立,則對于任意k≥3,k∈N*,均有f(k)<k2成立
C.若f(3)≥9成立,則對于任意k<3,k∈N*,均有f(k)<k2成立
D.若f(3)=9成立,則對于任意k≥3,k∈N*,均有f(k)≥k2成立

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.在△ABC中,sin2B=sinAsinC.
(1)若$\frac{1}{tanA}$,$\frac{\sqrt{3}}{3}$,$\frac{1}{tanC}$成等差數列,求cosB的值;
(2)若$\frac{BC}{sinA}$=4,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.若函數f(x)是一次函數,且f(f(x))=4x+1,則f(x)=$2x+\frac{1}{3},或-2x-1$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.若直線l∥平面α,直線a?α,則直線l與直線a的位置關系是(  )
A.l∥aB.l與a沒有公共點C.l與a相交D.l與a異面

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.tan$\frac{11π}{6}$的值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.-$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知函數f(x)=$\frac{1}{3}{x}^{3}+\frac{1}{2}a{x}^{2}+2bx+c(a,b,c∈R)$,且函數f(x)在區間(0,1)內取得極大值,在區間(1,2)內取得極小值,則z=(a+3)2+b2的取值范圍為($\frac{1}{2}$,4).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.若函數f(x)=x2+2(a-1)x+2在區間(-∞,1]內遞減,那么實數a的取值范圍為(  )
A.a≤2B.a≤0C.a≥2D.a≥0

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 伊人网视频在线观看 | 亚洲色图第一区 | 亚洲成人av | 麻豆精品一区二区 | 国产成人免费视频网站高清观看视频 | 日韩国产精品一区二区三区 | 久久精品视 | 国产一区二区三区在线免费 | 男人的天堂久久 | av在线影院| 99久久久国产精品 | 伊人青青操| 日韩亚洲一区二区 | 久久视频一区二区 | 中文字幕 亚洲一区 | 久久人爽 | 国产精品一区二区三区在线播放 | 亚洲精品久久久日韩美女极品合集下载 | 久久久久无码国产精品一区 | 91亚洲精华国产精华精华液 | 中文成人在线 | 毛片毛片毛片毛片毛片毛片毛片毛片 | 国产成人99久久亚洲综合精品 | 欧美成年黄网站色视频 | 在线视频91 | 欧美人牲 | 九九国产 | 青青草在线视频免费观看 | 午夜a级理论片915影院 | 国产一级特黄视频 | 欧美在线观看视频 | 中文字幕第31页 | 成人av观看| 亚洲这里只有精品 | 国产精品一区在线观看你懂的 | 免费黄色激情视频 | 在线观看www | 99国产精品 | 日本成人一区二区三区 | 免费看片色 | 91在线国产观看 |