【題目】已知拋物線:
,過焦點
的直線
與拋物線
相交于
,
兩點,且當直線
傾斜角為
時,與拋物線相交所得弦的長度為8.
(1)求拋物線的方程;
(2)若分別過點,
兩點作拋物線
的切線
,
,兩條切線相交于點
,點
關于直線
的對稱點
,判斷四邊形
是否存在外接圓,如果存在,求出外接圓面積的最小值;如果不存在,請說明理由.
【答案】(1)(2)存在;最小面積為
【解析】
(1)根據題意求出直線傾斜角為
時的方程,與拋物線方程聯立,利用根與系數關系和焦半徑公式,求出弦長,即可求出
;
(2)點關于直線
的對稱點為
,可得
,從而有
,判斷四邊形
是否存在外接圓,只需判斷是否有
,即
是否垂直,根據切線的幾何意義,求出
的斜率,即可得出結論,如果存在外接圓,外接圓的直徑為
,要使外接圓面積最小,即求
最小,利用根與系數關系和相交弦長公式,即可求解.
(1)由題意知,設點
,
,
當直線傾斜角為
時,直線
的方程為
,
由得:
,
所以.又由
,所以
,
所以拋物線的方程為.
(2)四邊形存在外接圓.
設直線方程為
,
代入中,得
,則
,
且,
,
所以,
因為:
,即
,所以
.
因此,切線的斜率為
,切線
的斜率為
,
由于,所以
,即
是直角三角形,
所以的外接圓的圓心為線段
的中點,線段
是圓的直徑,
所以點一定在
的外接圓上,即四邊形
存在外接圓.
又因為,所以當
時,線段
最短,最短長度為4,
此時圓的面積最小,最小面積為.
科目:高中數學 來源: 題型:
【題目】某工廠為提高生產效率,開展技術創新活動,提出了完成某項生產任務的兩種新的生產方式.為比較兩種生產方式的效率,選取名工人,將他們隨機分成兩組,每組
人.第一組工人用第一種生產方式,第二組工人用第二種生產方式.根據工人完成生產任務的工作時間(單位:
)繪制了如圖所示的莖葉圖(莖為十位數,葉為個位數):
(1)根據莖葉圖,估計兩種生產方式完成任務所需時間至少分鐘的概率,并對比兩種生產方式所求概率,判斷哪種生產方式的效率更高?
(2)將完成生產任務所需時間超過和不超過
的工人數填入下面的列聯表:
超過 | 不超過 | |
第一種生產方式 | ||
第二種生產方式 |
(3)根據(2)中的列聯表,能否有的把握認為兩種生產方式的效率有差異?
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇跡之一,其中較為著名的是胡夫金字塔.令人吃驚的并不僅僅是胡夫金字塔的雄壯身姿,還有發生在胡夫金字塔上的數字“巧合”.如胡夫金字塔的底部周長如果除以其高度的兩倍,得到的商為3.14159,這就是圓周率較為精確的近似值.金字塔底部形為正方形,整個塔形為正四棱錐,經古代能工巧匠建設完成后,底座邊長大約230米.因年久風化,頂端剝落10米,則胡夫金字塔現高大約為( )
A.128.5米B.132.5米C.136.5米D.110.5米
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從編號為1,2,3,4,…,10的10個大小、形狀相同的小球中,任取5個球.如果某兩個球的編號相鄰,則稱這兩個球為一組“好球”.
(1)求任取的5個球中至少有一組“好球”的概率;
(2)在任取的5個球中,記“好球”的組數為X,求隨機變量X的概率分布列和均值E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為 (t為參數),若以O為極點,x軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線C的極坐標方程為
.
(1)求曲線C的直角坐標方程及直線l的普通方程;
(2)將所得曲線C向右平移1個單位長度,再將曲線C上的所有點的橫坐標變為原來的2倍,得到曲線,求曲線
上的點到直線l的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,
底面
,
分別是
的中點,
,
,
.
(I)證明:;
(II)求直線與平面
所成角的正弦值;
(III)在邊上是否存在點
,使
與
所成角的余弦值為
,若存在,確定點
位置;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com